WARUNKI GRUNTOWO-WODNE

w rejonie przebudowy i nadbudowy budynku świetlicy w Łazach ul. Przyszłości 8

Lokalizacja: Łazy dz. 44/82

Gmina: Lesznowola

Powiat: piaseczyński

Województwo: mazowieckie

Opracował:

mgr Cz. Frankiewicz

nr upr. MOSZNIL 070967

Spis treści:

l.	Wstęp	3
II.	Zakres wykonanych prac	3
III.	Położenie, budowa geologiczna i warunki hydrogeologiczne	3
IV.	Charakterystyka geotechniczna podłoża	4
V.	Wnioski	5

- Tabela wartości charakterystycznych parametrów geotechnicznych gruntu.

Załączniki:

- 1. Mapa lokalizacyjna w skali 1:25000.
- 2. Mapa dokumentacyjna w skali 1:1000.
- 3. Karty dokumentacyjne otworów geotechnicznych w skali 1:50.
- 4. Przekrój geotechniczny w skali 1:200/50.
- 5. Objaśnienia znaków i symboli.

I. Wstep.

Badania geotechniczne przeprowadzono na działce nr 44/82 w Łazach gmina Lesznowola.

Celem niniejszej dokumentacji było określenie warunków gruntowo – wodnych oraz określenie parametrów gruntu w rejonie projektowanej nadbudowy budynku świetlicy przy ul. Przyszłości 8.

Podstawę prawną dokumentacji stanowi Rozporządzenie MSWiA z 24 września 1998 roku - w sprawie ustalania geotechnicznych warunków posadowienia obiektów budowlanych (Dz. U. Nr 126 poz. 839).

W trakcie badań posłużono się normami.

- PN 86/B 02480 Grunty budowlane. Określenia i symbole.
- PN B 02479 :1998 Dokumentowanie geotechniczne.
- PN B 04452 : 2002 Geotechnika. Badania polowe.
- PN 81/B 03020 Posadowienie bezpośrednie budowli.
- PN B 06050.1999 Oznaczenie powierzchni właściwej gleby.

II. Zakres wykonanych prac.

W ramach prac terenowych wykonanych w październiku 2006 roku odwiercono dwa otwory geotechniczne penetrometrem w rurach o średnicy Ø 3" do głębokości 5,0 m ppt każdy. Otwory wykonano w miejscach wskazanych przez projektanta i naniesiono na podkład syt − wys w skali 1:1000 metodą domiarów prostokątnych. Rzędne wysokościowe wyinterpolowano.

W trakcie wierceń prowadzono badania makroskopowe gruntów oraz obserwacje hydrogeologiczne. W ocenie warunków posłużono się ponadto wizją lokalną terenów przyległych, mapami oraz przedmiotowymi normami i rozporządzeniami.

Na podstawie wyników badań i obserwacji terenowych określano parametry gruntów i wydzielono warstwy geotechniczne oraz określono właściwości hydrogeologiczne podłoża. Opracowano część opisową i graficzną dokumentacji, którą sporządzono w czterech egzemplarzach

III. Położenie, budowa geologiczna i warunki hydrogeologiczne.

Teren badań leży w Łazach na skrzyżowaniu ulic Przyszłości i Wirażowej. W otoczeniu występuje zabudowa jednorodzinna i obszary zalesione. Różnice wysokości

względnych w rejonie przeprowadzonych badań są nieznaczne – dochodzą do kilkunastu centymetrów.

W budowie geologicznej podłoża terenu badań poza stropem główną rolę odgrywają utwory polodowcowe – zwałowe gliny piaszczyste oraz piaszczyste zwięzłe. W stropie terenu do głębokości 1,2 m ppt stwierdzono grunty nasypowe, pod którymi zalegają utwory rzeczne – piaski drobne oraz namuły piaszczyste.

Jednolitego poziomu wody gruntowej na badanym terenie nie stwierdzono. Na głębokości 2,75 – 2,8 m ppt stwierdzono sączenia śródglinowe. Woda z sączeń ustabilizowała się na głębokości 2,47 – 2,66 m ppt (rzędna ± 117,15 m npm). W okresach wiosennych roztopów lub intensywnych opadów atmosferycznych woda może gromadzić się na stropie glin w warstwie piasków i namułów piaszczystych.

IV. Charakterystyka geotechniczna podłoża.

W obrębie terenu badań występują grunty zróżnicowane pod względem genezy, litologii i cech fizykomechanicznych i właściwości hydrogeologicznych. Podłożem istniejącego obiektu są gliny zwałowe.

W stropie badanego terenu do głębokości 1,2 m ppt stwierdzono grunty nasypowe (0,4 – 0,8 m ppt) oraz piaski drobne i w spągu namuły piaszczyste o miąższości nie przekraczającej 0,4 m. Grunty te są luźne i średnie zagęszczone. Poniżej 1,2 m ppt do spągu otworów tj. 5 m ppt zalegają grunty spoiste – gliny piaszczyste przechodzące w spągu w piaszczyste zwięzłe.

Jako podstawę podziału gruntowego na warstwy geotechniczne (zgodnie z wytycznymi PN – 81/B – 03020) przyjęto kryterium budowy geologicznej uwzględniając genezę, litologię i własności fizykomechaniczne gruntów. Wyłączono z podziału grunty niespoiste i nasypowe zalegające powyżej posadowienia obiektu.

Dla gruntów spoistych jako parametr wiodący przyjęto stopień plastyczności I_{I.} (określony metodą wałeczkowań). W obrębie gruntów spoistych podłoża wydzielono 3 warstwy geotechniczne (w tym podwarstwy):

Warstwa I - to stwierdzone w spągu przebadanego profilu geologicznego gliny piaszczyste zwięzłe barwy szarej, mało wilgotne, występujące w stanie twardoplastycznym o uogólnionym stopniu plastyczności I_L = 0,08. Grunty warstwy występują poniżej głębokości 3,0 m ppt (otw. 1) i 3,6 m ppt (otw.

2). Dla wód stanowią środowisko nieprzepuszczalne o współczynniku filtracji $k_{10} < 10^{-8}$ m/s [współczynnik przepuszczalności (darcy) < 0.001].

Warstwa II - to gliny piaszczyste (miejscami z wkładkami piasków) zalegające pod st opami fundamentowymi budynku, twardoplastyczne, mało wilgotne miejscami wilgotne. Grunty warstwy II zalegają w przelocie głębokości 1,2 – 2,75 m ppt (rejon otw. 1) oraz 1,2 – 3,6 m ppt (rejon otw. 2). W obrębie warstwy stwierdzono przewarstwienia silnie zamarglone.

Ze względu na zróżnicowany stopień plastyczności w obrębie twardoplastycznych gruntów warstwy II wydzielono 3 podwarstwy:

IIa – o stopniu plastyczności $I_L = 0.10$

IIb – o stopniu plastyczności $I_L = 0.15$

IIc – o stopniu plastyczności $I_L = 0.20$.

Warstwa III - to plastyczne, wilgotne na granicy mokrych gliny piaszczyste stwierdzone w rejonie otw. 1 w przelocie głębokości 2,75 – 3,0 m ppt. Grunty warstwy charakteryzują się uogólnionym stopniem plastyczności $I_L = 0,40$. Grunty warstw II i III stanowią dla wód środowisko półprzepuszczalne o $k_{10} = 10^{-6} - 10^{-8}$ m/s [współczynnik przepuszczalności (darcy) 0,1 – 0,001).

Wnioski.

- 1. Badania i ocenę podłoża wykonano w celu zaprojektowania przebudowy budynku świetlicy.
- 2. Warunki gruntowo wodne dla projektowanej przebudowy i nadbudowy budynku są korzystne. Podłożem fundamentów obiektu są gliny zwałowe. W poziomie posadowienia i oddziaływania fundamentów zalegają grunty nośne twardoplastyczne (I_{I.} = 0,10 0,20) gliny piaszczyste (lokalnie mogą wystąpić w kontakcie z wodą w stanie plastycznym).
- **3.** W okresie badań warunki wodne były korzystne. Na głębokości 2,75 2,8 m ppt stwierdzono śródglinowe sączenie z którego woda stabilizuje się 2,47 2,66 m ppt (± 177,15 m npm).
- **4.** W innych okresach atmosferycznych (np. po wiosennych roztopach) woda może okresowo występować w nadglinowych piaskach i namułach tj. w kontakcie z fundamentem.

- **5.** Strop glin w okresie badań przesuszony, może okresowo wskutek zawilgocenia wkładek mało spoistych zmienić stan na bardziej plastyczny.
- 6. Wartości charakterystycznych parametrów geotechnicznych gruntów podano w tabeli.

Opracował:

mgr Cz. Ffar

nr upr. MOSZNIL 070967

Tabela wartości charakterystycznych parametrów geotechnicznych gruntu												
Numer warstwy Geotechnicznej	Stratygrafia	Rodzaj gruntu	Symbol gruntu wg pkt. 1.4.6 PN-81/b-03020	Stopleń plasty czności	Stopień zagęszczenia	Wilgotność naturajna	Gestoss objętościowa	Spójnosó	Kęt tarcia wewnętrznego	moduł pierwotnego odkształcenia gruntu	edometryczny moduł ściśliwości pierwotnej	
Nn Re	13.	Ro	Sy PN PN	I ⁽ⁿ⁾	ID.	Wn (n)	ρ (n)	Cu ⁽ⁿ⁾	øu ⁽ⁿ⁾	Eo (n)	H.(u)	
				<u> </u>		[%]	[t/m ³]	[kPa]	[%]	[MPa].	[iiPa]	
	gQp	Gpz, Gp/Gpz	В	0,08	-	13	2,16	37	2,0,5	38	50	
lla	gQp	Gpz, Gp/Gpz Gp, Gp//Pg	В	0,10		11	2,18	36	20,1	36	47	
llc	gQp	Gp	В	0,20		12	2,20	32	18,4	27,5	37	
116	gQp	Gp	В	0,15		12	2,20	34	19,2	31,5	41,5	
111	gQp	Gp	В	0,40		17	2,10	25	14,6	18	23,5	
		· ·			į.	÷						
	:							Ž				
								• .				

Obliczeniowe wartości parametrów geotechnicznych gruntu należy przyjmować wg zależności: $x^{\prime r/=} x^{\prime n/\cdot} (1 \pm 0,10)$

mgr Czesław Frankiewicz nr upr. MOSZNA 070967

KARTA DOKUMENTACYJNA OTWORU GEOTECHNICZNEGO										
Adres i nazwa obiektuŁązyrozbudowaświetlicyśrodowiskowej										
GminaLesznowola powiat .piaseczyński województwo mazowieckie										
Бy	System wiercenia: ręczny, okrętny GEOLØG Geologmgr. Czeckaw Frankiewicz									
	OPIC CRIENTIE Nr upr. MO\$ZNiL 070967									
Głębokość lustra wody w metrach	SKALA 1:50	Profil litologiczny	Przelot warstwy w m.	Miąższość warstwy w r	Rodzaj gruntu i barwa	Oznaczenia gruntu	Geneza i stratygrafia	Wilgotność	Ilość wałeczków	Stan gruntu
ОТ	WÓI	Rnr	1	•••	rzędna terenu119.6 m	n.p.m.				
	0,5	XXX	0,0-94		1.Nasyp glebowo-piaszczysty 2.Piasek drobny,szaro-brąz 3.Namuł piaszczysty,ciemny		Qh	40		
	1	~ ~ ~ . ~ ~ ~	1,0-1,2		4.Glina piaszczysta, przerosty piasku gliniastego, szaroniebieskie (od 1,5m	Nmp	fq _p	w		szg
	2	~ ~ ~ ~ ~	1,2-2,3	1,1	silnie zamarglone). 5.Glina piaszczysta, szaro- brąz.	Gp//Pg		mH	1/0/0/1	tpl; 1,=0,10
2,47	2,5	$\begin{array}{c} & & & & & & & & & & \\ & & & & & & & & $	2,3-2, 75		6.Glina piaszczysta, brąz. 7.Glina piaszczysta zwięzła brąz.//szare.	+ margiel I Gp		พ	1/1	tpl;1,=0, 15
2,75}	3,5	$\begin{array}{c} & \\ 2 & \\ 2 & \\ 2 & . \\ 2 &$	2,75-3,0 3,0-3,7	0,25	8.Glina piaszczysta na gra nicy piaszczystej zwięz- łej,szara.		gQp	W/m		pl.12=0,40
	4	~ · ~ · · ~ · ; ~ · ~ · ~				Gpz		mH	1/1	tpl;l1=0,08
	4,5	~ ~ ~ ~ . ~ ~ ~ . ~ ~ . ~ ~ .	3,7-5,C	1,3		<i></i>		ты	Vi	tpl;11=0,08
	5,5									
	6									

KARTA DOKUMENTACYJNA OTWORU GEOTECHNICZNEGO											
Adres i nazwa obiektu . Łazy- rozbudowa świetlicy środowiskowej.											
GminaLesznowola powiatpiaseczyński województwo mazowieckie											
Data wyk. wiercenia 10.2006 r. System wiercenia: ręczny, okrętny GEOLOG											
<u> </u>	Geolog										
dy w			į	Ei	nr-upi. M99Z	NIL 070067	T		T		
Głębokość lustra wody w		Profil litologiczny	wy wm.	Miąższość warstwy w	Rodzaj gruntu i barwa	gruntu	Geneza i stratygrafia		ków		
kość lu	SKALA 1:50	litolc	Przelot warstwy	zość w		Oznaczenia	i strat	tność	llość wałeczków	Stan gruntu	
Glęboko	SKAL	Profil	Przelo	Miążs		Oznac	Geneza	Wilgotność	Ilość	Stan g	
ОТ	wó	R nr	2		110.0	<u> </u>	,J	1	<u> </u>	1	
-	T	XXX	<u></u>	;; 	rzędna terenu 119,8 m	T		T	T	T	
	0,5	+	0,0-0,	8 0,8	<pre>1 • Nasyp piaszczysto-glebowy 2 • Piasek próchniczny na gra nicy namułu piaszczystego</pre>	(P+H)		น			
	1	.#. &	0,8-1,	2 0,4	3.Glina silnie piaszczystego brązowo-żółta	PH/Nmp	Q _h			ln	
	1,5	~~~~	1,2-1,5	0,35	4.Glina silnie piaszczysta, jasnobrąz.//jasnoszarej.	Gp		พ	1/2/2	tpl; 12=0,20	
	2	··~·	1,55-2,	1 0,55	<pre>b.Glina silnie piaszczysta jasnobrąz.szara.</pre>	Gp+ margiel		mu	0/1	tpl;11=0,08	
2,66	2,5	~ · · ~ · · · · · · · · · · · · · · · ·	2,1-2,8	0,7	6.Glina piaszczysta,brąz szara. 7.Glina piaszczysta zwięzła	Gp		W	1/1/2	tpl; 1_=0,15	
2,66	3	~~	2,8-3,6		ciemnoszara.		gQp				
	3,5	~ ·· ~ · · · · · · · · · · · · · · · ·	2,8-3,6	0,0		Gp		mw	1/2/1	tpl;1/=0,10	
	4	· ~ · ~									
	4,5	~ . ~ .	3,6-5,0	1,4		Gpz		mw	1/0/1	tpl:16=0,05	
	5	~ · ~ · 7									
	5,5										
	6										
									`		
					•						

PRZEKRÓJ GEOTECHNICZNY

Skala 1: $\frac{200}{50}$

G E O L O G
mgr Czesław Frankiewicz
nr upr. MOSZNIL 070967

OBJAŚNIENIA ZNAKÓW I SYMBOLI

Symbole geotechniczne gruntów wg normy PN-86/B-02480

GRUNTY SKALISTE

ST SM skała twarda skała miekka

GRUNTY NASYPOWE

nasyp niebudowlany nΝ nB nasyp budowlany

ZNAKI DODATKOWE DO OPISU GRUNTÓW

domieszki

przewarstwienia //

1 na pograniczu

w nawiasach określenia uzupełniające ()

GRUNTY ORGANICZNE RODZIME

Н grunt próchniczny

Nmg namuł o właściwościach gruntu spoistego

Nmp namuł o właściwościach gruntu sypkiego

T torf

GRUNTY MINERALNE RODZIME (NIESKALISTE)

KW zwietrzelina

KWq zwietrzelina gliniasta

KR rumosz

KRq rumosz gliniasty

Ko otoczaki

Ż żwir

Żg zwir gliniasty

Ро pospółka

Poa pospółka gliniasta

Pr piasek gruby

piasek średni

Pd piasek drobny

piasek pylasty

Pq piasek gliniasty

Пр pył piaszczysty

П

Gp glina piaszczysta

G glina

Gπ glina pylasta

Gpz glina piaszczysta zwięzła

Gz glina zwięzła

glina pylasta zwięzła

lp ił piaszczysty

lπ il pylasty

numer wiercenia rzedna wiercenia

piezometryczny poziom wody i głęb. w m ppt △ 2,3 nawiercony poziom wody gruntowej i głę. w m ppt

grunt nawodniony

3,3 sączenie wody i głęb. w m ppt

sondowanie udarowe ITB-ZW i strefa przebadana

sonda

otwór suchy

OZNACZENIE STANU GRUNTU

 I_{L} stpień plastyczności

stopień zagęszczenia

INNE OZNACZENIA

IV numer warstwy geotechnicznej

 I_{Ω}

granice litologiczno-stratygraficzne

SKŁAD NASYPÓW

żΙ żużel

K kamienie

C gruz deglany

В

beton