PRZEDSIĘBIORSTWO PROJEKTOWO - WYKONAWCZE deem

Anna Dziuba-Jaglińska,
98-350 Biała, Wiktorów 50 [filia: ul.Zloczewska 30B, 98-360 Lututów] tel. 609979 255, 607929 255, fax(043)84 19 255, biurodziuba@wp.pl NIP 832-193-69-91 REGON 731657889

PROJEKT WYKONAWCZY

ZMIANA POZWOLENIA NA BUDOWE NR 113LR/10 Z DNIA 01.04.2010R W ZAKRESIE ZMIANY FUNKCJI BUDYNKU I ZAGOSPOD.TERENU ŚWIETLICY WIEJSKIEJ NA BUDYNEK SZKOŁY PODSTAWOWEJ, PRZEDSZKOLA ORAZ ŚWIETLICY WIEJSKIEJ Z NIEZBEDNYMI INSTALACJAMI, ZJAZDEM Z DROGI GMINNEJ, CIĄGAMI PIESZO-JEZDNYMI I MIEJSCAMI POSTOJOWYMI

ODDYMIANIE KLATEK SCHODOWYCH

Lokalizacja:	Zgorzała dz nr ewid. 300 05-506 Zgorzała
Inwestor:	Gmina Lesznowola, 05-506 Ul.Gminnej Rady Narodowej 60

Architekt	Mgr inż. Maria Dziuba Spec. Architektura upr. nr 155/82/Op LO-0540	
Projektant	mgr inż. Andrzej Kaczmarzyk upr. nr KNP/8/304/2010 spec. Instalacje słaboprądowe	 Projektput systemów sygualizac if - kontrolnych i automaghi budynkowej. Uprawn. NTO 565/99; 282/59; 211/M/99; 5296/01.
Sprawdzający	inż. elek. Tomasz Lorek upr nr SLK/3308/ZZOOE/10 spec. Instalacje slaboprądowe izba SLK/BO/5564/08	TOMASZ LOREK UPRAWATrROBUDOWIANE W SPECJALNOSCI INSTALACYJNEJ Nr ewic. SLK/3308/ZOOE/10

Lututów styczeń 2015 r.

SPIS TREŚCI

1. Cel izakres opracowania
2. Podstawa opracowania
3. Opis systemu
4. Obliczenia dla przeprowadzenia doboru urzadzeń systemu
4.1 Parametry klatki schodowei nr I
4.2 Parametry klatki schodowej nr II
5. Rozwiazania lokalizacyine urzadzeń na dachu budynku
6. Charakterystyka pracy systemu oddymiania
7. Wytrzymałość
8. Zachowanie podczas próby pożarowei
9. Oznakowanie klap
10. Badania odbiorcze i konserwacja
11. Zalecenia użytkowe
12. Zalecenia serwisowe
13. Instalacia przewodowa
14. Zestawienie materiałów

1. Cel izakres opracowania

Celem niniejszego opracowania, zgodnie z zakresem działań ujętych w wytycznych rzeczoznawcy ds. zabezpieczeń ppoż., jest projekt wentylacji oddymiającej klatki schodowe w projektowanym budynku Szkoły Podstawowej, Przedszkola oraz Świetlicy Wiejskiej w Zgorzale, gmina Lesznowola działka nr ewidencyjny 300.
Rozwiązania projektowe instalacji mają zapewnić bezpieczną ewakuacje użytkownikom obiektu na wypadek pożaru .
Instalację opracowano oparciu o przepisy dotyczące instalacji grawitacyjnych do odprowadzania dymu i ciepła.

2. Podstawa opracowania

Podstawa do niniejszego opracowania są:

- Ustawa z dnia 7 lipca 1994 roku Prawo budowlane (Dz.U. Nr 89 poz. 414 z późniejszymi zmianami);
- Rozporządzenie Ministra infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz. U. Nr 75 poz. 690 z późniejszymi zmianami);
- Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia

7 czerwca 2010 r. w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (Dz. U. Nr 109, poz. 719);

- PN-B-02877-4:2001 oraz PN-B-02877-4:2001/Az1 Ochrona przeciwpożarowa budynków. Instalacje grawitacyjne do odprowadzenia dymu i ciepła. Zasady projektowania.
- umowa zawarta pomiędzy Inwestorem
- projekt architektoniczno- budowlany obiektu
- warunki ochrony pożarowej

3. Opis systemu

System oddymiania ma za zadanie odprowadzanie dymu i ciepła z klatki schodowej wykorzystywanej do celów ewakuacji. Prawidłowo zaprojektowane i zainstalowane klapy dymowe spełniają następujące funkcje:

- ułatwiają ewakuacje poprzez utrzymanie dolnej warstwy wolnej od dymu,
- ułatwiaja działania ratownicze,
- zapewniają ochronę konstrukcji budynku oraz jego wyposażenia,
- zmniejszają pośrednie straty pożarowe wywołane przez wydzielający się dym i gorące gazy pożarowe.
W celu usuwania dymu z klatki schodowej, przyjęto rozwiazanie polegajace na wywołaniu pionowego przepływu powietrza. Dym może przedostać się do wnętrza klatki schodowej w trakcie akcji ewakuacyjnej. Ruch powietrza uzyskuje się poprzez otwarcie otworu w dachu nad klatką schodowa (klapy dymowej). Naplyw powietrza poprzez załączenie wentylatora pełniącego role napowietrzania klatki podczas otwartej klapy dymowej lub poprzez otwarcie drzwi napowietrzających zewnętrznych.
Otwarcie klapy dymowej, załączenie wentylatora oraz otwarcie drzwi napowietrzajacych nastąpi automatycznie po wykryciu przez czujkę dymową zagrożenia.
Wysterowanie elementów oddymiania poprzez centralki oddymiania naprzykład Centrala MCR-9705-10A.

4.Obliczenia dla przeprowadzenia doboru urzadzeń systemu.

Kalkulacja czynnej powierzchni oddymiania klatki
Zgodnie z PN-B-02877-4:2001 dla budynków niskich powierzchnia czynna klapy dymowej powinna wynosić minimum 5% powierzchni klatki schodowej.

4.1. Parametry klatki schodowej numer I

Powierzchnia w rzucie $-31,81 \mathrm{~m}^{2}$
Wysokość klatki schodowej H-8,20m
Stałe urządzenia gaśnicze - tryskacze: - nie dotyczy.
System sygnalizacji pożarowej: - nie dotyczy.
Obliczenia dla klatki schodowej numer I
Wskaźnik udziału procentowego wymaganej powierzchni czynnej α w \% przyjęto
jak dla pomieszczeń specjalnych.
Dla budynku niskiego Acz powinna wynosić min. 5\%
Wymagana powierzchnia czynna klap dymowych w klatce o pow. max rzutu podłogi - $1,59 \mathrm{~m}^{2}$
gdzie:
Acz - wymagana powierzchnia czynna klap dymowych, [m2],
AR - powierzchnia klatki schodowej w rzucie [m2],
A_{G}-powierzchnia geometryczna klap dymowych
a - wskaźnik udziału procentowego, 5%
Acz $=\alpha^{*}$ AR
Acz $=0,05$ * $31,81 \mathrm{~m}^{2}$
$A c z=1,59 \mathrm{~m} 2$
Zastosowano klapę dymowa o powierzchni geometrycznej $A_{G}=2,40 \mathrm{~m}^{2}$
Powierzchnia czynna dla takiej klapy dla wersji z owiewkami wynosi $\mathrm{Acz}=1,63 \mathrm{~m}^{2}$
Klapa dymowo-wentylacyjna jednoskrzydłowa naprzykład mcr-PROLIGHT typ C155.
Podstawa prosta o wys. $50 \mathrm{~cm} z$ blachy stalowej ocynkowanej gr. $1,25 \mathrm{~mm}$, malowana RAL zbliżony do kolorystyki dachu, ocieplona wełną mineralna gr. 20 mm , wymiar w świetle podstawy $155 \times 155 \mathrm{~cm}$. Wypelnienie poziome stanowi płyta z poliwęglanu kanalikowego gr. 20 mm , 9 kom., mleczna o współczynniku U=1,59 W/m2K B-s2, d0.
Klasyfikacja obciążenia śniegiem SL550 ($550 \mathrm{~N} / \mathrm{m} 2$).
Oddymianie i wentylacja sterowane elektrycznie 24V. Jeden siłownik 4A.

Wymagana powierzchnia otworów napowietrzających Ap.
$\mathrm{Ap}=1.3$ * 2,40
$\mathrm{ApP}=3,12 \mathrm{~m} 2$
Zastosowane otwory napowietrzajace tj. drzwi zewnętrzne D2 oraz jedno skrzydło okienne O1a jako uchylne z siłownikami o parametrach napędu 24VDC/1,2A, siła 300N, kat otwarcia 95° oraz jedno skrzydło okienne O1a jako uchylne z siłownikami o parametrach napędu siłownik $24 \mathrm{~V} / 4 \mathrm{~A}$, wysuw 500 mm .

4.1.Parametry klatki schodowei numer II

Powierzchnia w rzucie $-31,08 \mathrm{~m}^{2}$
Wysokość klatki schodowej H-8,20m
Stałe urządzenia gaśnicze - tryskacze: - nie dotyczy.
System sygnalizacji pożarowej: - nie dotyczy.
Obliczenia dla klatki schodowej numer II
Wskaźnik udziału procentowego wymaganej powierzchni czynnej α w \% przyjęto
jak dla pomieszczeń specjalnych.
Dla budynku niskiego Acz powinna wynosić min. 5\%
Wymagana powierzchnia czynna klap dymowych w klatce o pow. max rzutu podłogi-1,55m²
gdzie:
Acz - wymagana powierzchnia czynna klap dymowych, [m2],
AR - powierzchnia klatki schodowej w rzucie [m2],
A_{G}-powierzchnia geometryczna klap dymowych
α - wskaźnik udziału procentowego, 5%
Acz $=\alpha^{*} A R$
Acz $=0,05$ * $31,08 \mathrm{~m}^{2}$
$A c z=1,55 \mathrm{~m} 2$
Zastosowano klapę dymową o powierzchni geometrycznej $\mathrm{A}_{\mathrm{G}}=2,40 \mathrm{~m}^{2}$
Powierzchnia czynna dla takiej klapy dla wersji z owiewkami wynosi $A c z=1,63 \mathrm{~m}^{2}$
Klapa dymowo-wentylacyjna jednoskrzydłowa naprzykład mcr-PROLIGHT typ C155.
Podstawa prosta o wys. 50 cm z blachy stalowej ocynkowanej gr. $1,25 \mathrm{~mm}$, malowana RAL zbliżony do kolorystyki dachu, ocieplona wełną mineralna gr. 20 mm , wymiar w świetle podstawy $155 \times 155 \mathrm{~cm}$. Wypełnienie poziome stanowi płyta z poliwęglanu kanalikowego gr. 20 mm , 9 kom., mleczna o współczynniku $\mathrm{U}=1,59 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$ B-s2, d0.
Klasyfikacja obciażzenia śniegiem SL550 (550 N/m2).
Oddymianie i wentylacja sterowane elektrycznie 24V. Jeden siłownik 4A.

Wymagana powierzchnia otworów napowietrzających Ap.
Ap $=1.3 * 2,40$
$\mathrm{ApP}=3,12 \mathrm{~m} 2$
Zastosowane otwory napowietrzające tj. drzwi zewnętrzne D2, drzwi wewnętrzne N1 o parametrach napędu $24 \mathrm{VDC} / 1,2 \mathrm{~A}$, , siła 300 N , kąt otwarcia 95° oraz jedno skrzydło okienne O1a jako uchyine z siłownikami o parametrach napędu siłownik $24 \mathrm{~V} / 4 \mathrm{~A}$, wysuw 300 mm .

6. Rozwiazania lokalizacyine urzadzeń na dachu budynku

Istniejący układ architektoniczny budynku pozwala na spetnienie w pełni wymogów lokalizacyjnych klap wynikajacych z normy.

7. Charakterystyka pracy systemu oddymiania

Klapy dymowe wyposażone są w urządzenia do automatycznego i zdalnego (ręcznego) wyzwalania. Centrale oddymiania umieszczono na najniższych kondygnacjach klatek schodowych. Do sterownia klapami i oknami oddymiajacymi zaproponowano centrale oddymiania typu MCR firmy Mercor. Centrale oddymiania będą współpracować z przyciskami oddymiania RPO1 i przewietrzania LT firmy Mercor. Napowietrzanie będzie realizowane za pomocą napędów drzwiowych ESCO BS $24 \mathrm{~V} / 1,2 \mathrm{~A}$ i okiennych KM 35 i KM $2024 \mathrm{~V} / 0,8-1,4 \mathrm{~A}$
Proces otwierania klapy dymowej do położenia końcowego nie może trwać dłużej niż 60s.Automatyczne otwieranie klap dymowych jest wywoływane przez instalacje wyposażone w czujki dymowe.
W przypadku zauważenia zjawisk pożarowych przez użytkowników obiektu istnieje możliwość ręcznego uruchomienia systemu oddymiania. Po naciśnięciu przycisku oddymiania wygenerowany zostaje sygnał do centrali, która wyśle sygnał do siłownika otwierającego klapę dymową i uruchomi napowietrzanie klatek.

8. Wytrzymałość.

Klapy dymowe muszą być tak wykonane oraz zamocowane, aby wytrzymywały spodziewane w praktyce obciążenia ale bez zniszczenia lub większych odkształceń i zapewniały zdolność działania.

9. Zachowanie podczas próby pożarowei.

W czasie badania zachowania się klap dymowych w warunkach pożarowych klapy nie moga odkształcać się na skutek wzrostu temperatury w sposób powodujacy zmniejszenie powierzchni czynnej badanych klap.
Instalacje uruchamiające klapy dymowe, tzn. instalacje sygnalizacyine oraz instalacje zasilające, jak również silniki zębatkowe i inne urzadzenia powodujące otwarcie klap, muszą zapewnić niezawodność działania co najmniej w ciagu 30 min działania pożaru i być zasilane poza wyłącznikiem przeciwpożarowym.

10. Oznakowanie klap.

Klapy muszą być w sposób trwały oznakowane z podaniem następujących danych:

- typ klapy,
- nazwa producenta,
- rok produkcji,
- powierzchnia czynna klapy.

11. Badania odbiorcze i konserwacia

Po ostatecznym zainstalowaniu klap dymowych i wentylatorów, odprowadzających dym i ciepło z pomieszczenia, należy zbadać poszczególne elementy pod względem zgodności z niniejszą instrukcja, zdolności działania i gotowości eksploatacyjnej. Firma wykonująca musi po wykazaniu zdolności działania klap dymowych załączyć następujace dokumenty:

- świadectwo dopuszczenia klap do stosowania w budownictwie,
- instrukcję eksploatacji i obsługi klap oraz ich oprzyrządowania,
- instrukcję badania i konserwacji łącznie z listą części zamiennych do
czynności konserwacyjnych,
- rysunki, na których jest uwidocznione położenie i wymiary wszystkich
zainstalowanych klap.
Zalecenia odbiorowe.
Przy odbiorze zostana uruchomione wszystkie zestawy oddymiajace. Z przeprowadzonych prób zostanie sporządzony protokół odbiorowy z podpisami osób biorących udział w odbiorze.
Przedstawiciel inwestora otrzyma komplet dokumentacji powykonawczej. Instalator systemu jest zobowiązany do przeprowadzenia szkolenia obsługi systemu. Protokół odbiorowy zostanie przekazany inwestorowi i stanie się podstawą do rozliczenia i przekazania instalacji do serwisu.

12. Zalecenia użytkowe.

Instalację oddymiania należy serwisować i użytkować według dokumentacji techniczno-ruchowej. Instalacja może być serwisowana wyłącznie przez osoby uprawnione. Użytkowanie instalacji może być realizowane tylko i wyłącznie przez osoby w tym celu przeszkolone.

13. Zalecenia serwisowe.

W regularnych odstępach czasu, według danych wytwórcy, co najmniej jednak raz do roku, klapa dymowa wraz z całym układem wyzwalania, energetyczne przewody zasilające oraz ich osprzęt muszą być sprawdzane przez specjalistę pod względem zdolności działania i gotowości eksploatacyjnej oraz konserwowane i ewentualnie naprawiane. Kontrole należy wpisywać do książki eksploatacyjnej.

Czynności wykonywane podczas konserwacji:

- sprawdzić otwieranie klap poprzez zdalne sterowanie (zadziałanie automatyki),
- sprawdzić wizualnie stan kopuły, uszczelnień i elementów mocujacych,
- sprawdzić mocowanie i stan układu napędowego,
- sprawdzić oporność izolacji instalacji elektrycznej (stan przewodów, połączeń i mocowań),
- sprawdzić stan przycisków (szybki, opisy, wizualny wygląd i diody LED),
- sprawdzić stan akumulatorów,
- sprawdzić poprawność weryfikacji sygnałów zewnętrznych przez centralę i sposób realizacji założonych procedur,
- sprawdzić skuteczność działania czujki (stan zabrudzenia - w razie potrzeby wymienić),
- nasmarować mechanizm siłowników,

14. Instalacia przewodowa

Linie dozorowe optycznych czujek dymu wykonać przewodami typu YnTKSYekw $1 \times 2 \times 0.8$ $\mathrm{mm} w$ wersji niepalnej. Linie przycisków przewietrzania przewodami typu YnTKSY $2 \times 2 \times 0,8$ $\mathrm{mm} w$ wersji niepalnej. Linie przycisków oddymiania wykonać kablem HTKSHPH90 $4 \times 2 \times 0.8$, natomiast doprowadzenia do siłowników klap oddymiających kablem HDGsPH90 3x1,5.

15. Zestawienie materiałów

1	Centrala oddymiania MCR 9705-10A z akumulatorami	MERCOR	2 szt.
2	Przycisk oddymiania PRO 1	MERCOR	4 szt.
3	Przycisk przewietrzania LT	MERCOR	2 szt.
4	Napęd drzwiowy ESCO BS 24V/1,2A	MERCOR	3 szt.
5	Napęd okna silownik łańcuchowy ESCO KM35 24V/1,4A	MERCOR	1 szt.
6	Napęd okna siłownik łañcuchowy ESCO KM20 24V/0,8A	MERCOR	1 szt.
7	Klapa oddymiania z podstawa iowiewkami z siłownikiem 24V/4A	MERCOR	2 szt.
8	Optyczna czujka dymu DOR-40	POLON-ALFA	4 szt.
9	Gniazdo G-40	POLON-ALFA	4 szt.
10	Kabel YnTKSYekw $1 \times 2 \times 0,8$	BITNER	60 mb
11	Kabel HDGsPH90 $3 \times 1,5$	BITNER	100 mb
12	Kabel HTKSHPH90 $4 \times 2 \times 0,8$	BITNER	40 mb
13	Kabel YnTKSY $2 \times 2 \times 0,8$	BITNER	15 mb
14	Rura RL18	HURTOWNIA ELEKTRYCZNA	100 mb

KLATKA SCHODOWA NR 1

OZNACZENIA:

CI	- CEntrala oddymiania	\leq	- םPTYCZNA CZUJKA dYMu
\square	- PRZYCISK	\triangle	- NAPE¢ DRZWIDWY
P	- PRZYCISK PRZEWIETRZANIA	\square	- NAPED DKIENnY

$\begin{gathered} \text { PRZEDSIEBIORSTWO } \\ \text { PROJEKTOWO-WYKONAWCZE } \\ \text { "deem" Anna Dziuba-Jaglin̆ska } \\ \text { Wiktorów 50, } 98-350 \text { Biala } \end{gathered}$			atime	4	\%
		mostat		2x	$=$
	$1: 100$		侕	\%	PW
					OD-2

