PRZEDSIEBIORSTWO PROJEKTOWO - WYKONAWCZE deem Anna Dziuba-Jaglińska,
98-350 Biała, Wiktorów 50 [filia: ul.Złoczewska 30B, 98-360 Lututów] tel. 609979 255, 607929 255, fax(043)84 19 255, biurodziuba@wp.pl NIP 832-193-69-91 REGON 731657889

PROJEKT WYKONAWCZY
 ZMIANA POZWOLENIA NA BUDOWE NR 113LR/10 Z DNIA 01.04.2010R W ZAKRESIE ZMIANY FUNKCJI BUDYNKU I ZAGOSPOD.TERENU ŚWIETLICY WIEJSKIEJ NA BUDYNEK SZKOŁY PODSTAWOWEJ, PRZEDSZKOLA ORAZ ŚWIETLICY WIEJSKIEJ Z NIEZBĘDNYMI INSTALACJAMI, 2-ma ZJAZDAMI Z DROGI GMINNEJ, CIĄGAMI PIESZO-JEZDNYMI, MIEJSCAMI POSTOJOWYMI

 TECHNOLOGIA KOTŁOWNI GAZOWEJ

 TECHNOLOGIA KOTŁOWNI GAZOWEJ}

Lokalizacja:	Zgorzała dz nr ewid. 300, 112/10 05-506 Zgorzała
Inwestor:	Gmina Lesznowola, 05-506
	Ul.Gminnej Rady Narodowej 60

Projektant	mgr inż.Roman Golański spec.instal.i urz.sanitar. Upr nr OPL/0605/POOS/10 OPL/IS/0093/10	
Sprawdzający	mgr inż.Mariusz Kościelny spec.instal.i urz.sanitar. Upr nr OPL/0546/POOS/09 OPL/IS/0007/10	mgr inż. Mariusz Koscielny ruzadzen clephyc wen yory y hegzowych, wodociqoowytikonal foyinych Nrewid.OPLO5A6/PDOS109

Lututów styczeń 2015r.

TECHNOLOGIA KOTŁOWNI GAZOWEJ

Zawartość opracowania

1. Przedmiot opracowania
2. Podstawa opracowania
3. Koncepcja zaopatrzenia obiektu w ciepło
4. Rozwiązanie techniczne technologii kotłowni
5. Izolacje termiczne
6. Przejście przez przegrody p.poż.
7. Wymagania dla podpór i zawiesi
8. Wymagania i zalecenia
9. Wytyczne branżowe
10. Uwagi końcowe
11. Obliczenia
12. Zestawienie urządzeń i podstawowych materiałów
13. Zestawienie elementów komina i czopucha
14. Rysunki

S 1 - Rzut kotłowni gazowej
S 2 - Przekrój A - A
S 3 - Przekrój B - B
S 4 - Konstrukcja komina i czopucha
S 5 - Aksonometria instalacji gazowej
S 6 - Schemat instalacji ASBIG
S 7 - Punkt redukcyjno - pomiarowy
S 8-Schemat technologiczny kołłowni gazowej

Opis techniczny do projektu technologii kotlowni gazowej dla Budynku Szkoly Podstawowej, Przedszkola oraz Świetlicy Wiejskiej w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.

1. PRZEDMIOT OPRACOWANIA

Przedmiotem niniejszego opracowania jest projekt technologii kotłowni gazowej dla Budynku Szkoły Podstawowej, Przedszkola oraz Świetlicy Wiejskiej w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.

2. PODSTAWA OPRACOWANIA

Podstawą niniejszego opracowania są:

1. Zlecenie Inwestora
2. Założenia projektowe uzgodnione z Inwestorem
3. Projekt zamienny instalacji co i ct dla Budynku Szkoły Podstawowej, Przedszkola oraz Świetlicy Wiejskiej w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.
4. Warunki techniczne dostawcy gazu dla projektowanej technologii kotłowni gazowej.
5. Projekt zagospodarowania terenu
6. „Warunki techniczne wykonania i odbioru kotłowni na paliwo gazowe i olejowe" - oprac. P.K.T.S.G.G. i K. , wydanie II , W-wa 2000 r.
7. PN-B-02431-1-„, Ogrzewnictwo - Kotłownie wbudowane na paliwo gazowe o gęstości względnej mniejszej niż 1 - Wymagania "
8. „Sieci i instalacje gazowe - poradnik" - K. Bąkowski, W-wa 2007r.
9. Rozp. Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz. Ustaw nr 75 z dn. 15.06.2002 r.)
10. Materiały do projektowania kotłowni i nowoczesnych systemów grzewczych - oprac. VIESSMANN - 2004 r.
11. Materiały pomocnicze do projektowania instalacji wody zimnej, ciepłej i kanalizacji - oprac. COBRTI „Instal", W-wa 1981 r.
12. Obowiązujące przepisy, normy, katalogi

3. KONCEPCJA ZAOPATRZENIA OBIEKTU W CIEPLO

Zgodnie z założeniami Inwestora przyjęto koncepcję zaopatrzenia w ciepło projektowanego obiektu z własnej kotlowni gazowej wbudowanej zlokalizowanej w wydzielonym pomieszczeniu piętra

Dla projektowanego obiektu przyjmuje się cztery oddzielne obiegi grzewcze :

- dwa obiegi co
- obieg ciepła technologicznego
- obieg przygotowania cwu

4. ROZWIAZANIE TECHNICZNE TECHNOLOGII KOTLOWNI

4.1. Schemat technologiczny kotlowni.

Schemat technologiczny kotłowni stanowią:

- kocioł wodny kondensacyjny firmy BUDERUS typu LOGANO plus GB312 o mocy cieplnej 160 kW
- sprzęgło hydrauliczne z separatorem powietrza typu SPIROCROSS DN050
- naczynie wzbiorcze przeponowe dla kotła typu REFLEX NG12/3
- naczynie wzbiorcze przeponowe dla co typu REFLEX N50/6
- naczynie wzbiorcze przeponowe dla ct typu REFLEX S18/10
- pompa obiegowa co nr 1 typu ALPHA 2 25-60 130
- pompa obiegowa co nr 2 typu ALPHA 2 25-60 130
- pompa obiegowa ct (obieg pierwotny) typu MAGNA 25-60
- wymiennik płytowy glikol - woda typu LB31-130 5/4" o mocy 65 kW
- pompa obiegowa ct (obieg wtórny) typu MAGNA 25-60
- mieszacze trójdrogowe nr 1 i 2 typu HRB 3, $\mathrm{dn}=32 \mathrm{~mm}$
- pompa obiegu kotła typu MAGNA 32-80
- podgrzewacz CW pionowy typu LOGALUX SU400/5 o poj. 4001
- pompa obiegowa CW typu MAGNA 25-60
- pompa cyrkulacyjna CW ALPHA $225-60 \mathrm{~N}$
- naczynie wzbiorcze przeponowe dla cw typu REFIX DD 18
- demineralizator firmy IWATER typu IWR25MB o wyd. $0,5 \mathrm{~m}^{3} / \mathrm{h}$
- rurociągi i armatura odcinająca
- armatura zabezpieczająca
- osprzęt kontrolno - pomiarowy
- elementy regulacji automatycznej.

4.2. Instalacia obiegu czynnika grzejnego.

Zaprojektowano pięć obiegów czynnika grzejnego, a w szczególności:
Obieg nr 1 - instalacja co grzejnikowa
Obieg nr 2 - instalacja co grzejnikowa
Obieg nr 3 - instalacja ct (glikol)
Obieg nr 4 - instalacja grzewcza podgrzewaczy cw

4.3. Zabezpieczenie kotla.

Zabezpieczenie kotła przed przekroczeniem dopuszczalnego ciśnienia roboczego czynnika grzejnego stanowi zawór bezpieczeństwa membranowy typu SYR1915o średnicy d1 x d2 $=25 \times 32 \mathrm{~mm}$ oraz ciśnieniu otwarcia po $=0,30 \mathrm{MPa}$ zainstalowane na króćcu wyplywowym kotla.

4.4. Instalacia napelniania i uzupelniania zladu woda.

Do napełniania i uzupełniania zładu wodą zaprojektowano instalację złożoną z podstawowych elementów :

- rurociągu i armatury
- filtra wstępnego typu EPURION A-25-2
- demineralizatora typu IWR25MB o wyd. $0,5 \mathrm{~m} 3 / \mathrm{h}$
- wodomierza skrzydełkowego JS-1,5 Ø 20 mm
- zawór napełniania instalacji typu SYR 6827CA Ø 15 mm

4.5. Uklad stabilizacii ciśnienia wody w zladzie.

Zaprojektowano zład grzewczy w systemie zamkniętym w którym ciśnienie w zładzie stabilizuje zawór napełniania instalacji typu SYR 6827CA Ø 20 mm ustawiony na ciśnienie $0,2 \mathrm{MPa}$.

4.6. Stacja uzdatniania wody uzupelniajacei.

Mając na uwadze wymagania stawiane wodzie przez wytwórcę kotłów zaprojektowano automatyczną stację uzdatniania wody o przepustowości $0,5 \mathrm{~m}^{3} / \mathrm{h}$ złożoną z:

- filtra wstępnego typu EPURION A-25-2
- demineralizatora typu IWR25MB o wyd. $0,5 \mathrm{~m} 3 / \mathrm{h}$

Uwaga: Rozruch automatycznej stacji uzdatniania wody winien przeprowadzić serwis wytwórcy urządzeń.

4.7. Regulacja automatyczna.

Zaprojektowano obwody regulacji automatycznej a w szczególności :

- regulacja temperatury czynnika grzejnego w funkcji temperatury zewnętrznej (regulacja pogodowa) z programowaniem ogrzewania
- regulacja temperatury wody powrotnej do kotła
- regulacja temperatury cwu
- regulacja ciśnienia czynnika grzejnego w układzie zamkniętym (stabilizacja ciśnienia)
- regulacja procesu regeneracji złoża zmiękczacza.

4.7.1. Regulacia pogodowa.

Zaprojektowano automatyczną regulację wydajności kotła w zależności od warunków atmosferycznych i czasokresu użytkowania ogrzewanych obiektów. Automatyka pogodowa sterowana jest czujnikiem temperatury zewnętrznej oraz programowana w cyklu dobowym i tygodniowym.

Obwód regulacji ciągłej sterujący zaworem mieszającym trójdrogowym powoduje płynne zmiany stopnia zmieszania wody zasilającej z powrotną impulsami od czujników temperatury zainstalowanych na zewnątrz budynku i w przewodzie wody zasilającej po zmieszaniu.

Dwa obiegi co czynnika grzejnego wyposażone zostaną w zawory mieszające trójdrogowe z siłownikami elektrycznymi oraz czujniki temperatury.

W/w siłowniki współdziałać będą z regulatorem pogodowym typu LOGAMATIC 4323 + FM441 + FM442.

4.7.2. Regulacia temperatury wody powrotnei do kotla.

Zaprojektowano regulację temperatury wody powrotnej do kotła za pomoca obwodu sterowania praca pompy obiegu kotłowego.

Pompa obiegu kotłowego na impuls czujnika temperatury zainstalowanego w głównym przewodzie powrotnym podawać będzie wodę gorącą z głównego przewodu zasilającego do głównego przewodu powrotnego.

Elementami obiegu będą :

- czujnik temperatury wody powrotnej
- pompa obiegu kotlowego
- sterownik kotłowy typu LOGAMATIC 4323 poprzez moduł FM 441

Minimalna temperatura wody powrotnej $+50^{\circ} \mathrm{C}$

4.7.3. Regulacia temperatury CWU.

Zaprojektowano regulację temperatury cwu polegającą na sterowaniu pracą pompy obiegowej cw impulsami z czujnika temperatury zainstalowanego w płaszczu podgrzewacza cw poprzez regulator typu LOGAMATIC 4323 z modułem FM 441 Zaprojektowano sterowanie czasowe praca pompy cyrkulacyjnej cw poprzez w/w regulator.

4.8. Instalacia zasilania kotła w gaz ziemny.

Zaprojektowano instalację zasilania kotłów gazem ziemnym wysokometanowym E złożoną z:

- palnika gazowego wbudowanego modulowanego
- rurociągu gazowego wyrównawczego $Ø 80 \mathrm{~mm}$,
- punktu redukcyjno-pomiarowego firmy EM-GAZ typu PR-25/ARD-G16DE/GX w szafce gazowej naściennej wyposażonego w:
- rurę wejściową Ø20 mm,
- zawór kulowy sferyczny $\varnothing 15 \mathrm{~mm}$,
- manometr $0,6 \mathrm{MPa} \mathrm{z}$ kurkiem trójdrogowym Ø15 mm,
- filtr gazu typu FGA-15/K Ø15 mm,
- reduktor ciśnienia gazu typu ARD 25 o przepustowości $25 \mathrm{~m}^{3} / \mathrm{h}$,
- zawór kulowy gwintowany $\emptyset 32 \mathrm{~mm}$,
- gazomierz miechowy typu G 16 o przepustowości od 0,16 do $25 \mathrm{~m}^{3} / \mathrm{h}$
- rejestrator (rejestrator z transmisją danych),
- manometr 6 kPa z kurkiem trójdrogowym Ø15 mm,
- zawór kulowy blokowy Ø50 mm,
- zawór z głowicą odcinającą typu MAG-3 Ø50 mm,
- rurę wyjściową Ø 00 mm .

4.9. System sygnalizacyino - alarmowy wyplywu gazu.

Zaprojektowano w pomieszczeniu kotłowni Aktywny System Bezpieczeństwa Instalacji Gazowej firmy GAZEX w skład którego wchodzą:

- przetwornik poziomu stężeń gazów tj. detektor dwuprogowy gazu w obudowie przeciwwybuchowej typu DEX 12. (zainstalowany pod stropem kotłowni w obrębie kotła)
- moduł alarmowy sterujący praca systemu typu MD-4.Z (zainstalowany na ścianie w kotłowni)
-- głowica samozamykająca z zaworem kulowym typu MAG 3 Ø50 (zainstalowany w szafce gazowej)
- sygnalizator akustyczno - optyczny typu SL-31 (usytuowany przy drzwiach

4.10. Odprowadzenie spalin.

Zaprojektowano odprowadzenie czopuchem typu MKKD ze stali kwasoodpornej o średnicy wewnętrznej $\emptyset 160$ i 250 do komina typu MKKS ze stali kwasoodpornej o średnicy wewnętrznej Ø 250 mm i wysokości $\mathrm{Hk}=8,5 \mathrm{~m}$.

4.11. Rurociagi i armatura.

Zaprojektowano rurociągi technologiczne z rur stalowych czarnych ze szwem i bez szwu typu R35 łączonych na spaw i kołnierze oraz rur miedzianych łączonych przez lutowanie.
Armatura odcinająca kulowa mufowa do $\varnothing 50 \mathrm{~mm}$ i kołnierzowa od $\varnothing 65 \mathrm{~mm}$. Przejścia przez ściany kotłowni w tulejach stalowych należy uszczelnić masą plastyczną ognioodporną HILTI typu CP 671 EI 120.

Rurociagi gazowe pomalować farbą nawierzchniową koloru żółtego.

4.12. Próby i rozruch.

Roboty montażowe i próby wykonać zgodnie z "Warunkami technicznymi wykonania i odbioru robót budowlano - montażowych - tom II - Instalacje sanitarne i przemysłowe "- oprac. COBRTI „Instal", W-wa 1989 r.

Po zakończeniu robót montażowych instalację technologiczną należy przepłukać i wykonać próby szczelności.
Próbę na zimno wykonać na ciśnienie $0,6 \mathrm{MPa}$, a na gorąco przeprowadzić w ciągu 72 godzin przy obliczeniowych parametrach czynnika grzejnego.
Po wykonaniu prób pomontażowych przeprowadzić badanie techniczne urządzeń ciśnieniowych przez UDT oraz rozruch kotłowni zgodnie z instrukcją wytwórcy kotłów.

4.13. Wentylacia kotlowni.

Zaprojektowano wentylację naturalną nawiewno - wywiewną.
Nawiew powietrza do kotlowni za pomocą czerpni ściennej typu A o wym. 400x200 mm osadzoną w ścianie zewnętrznej na wysokości 30 cm nad posadzką kotłowni. Wywiew powietrza za pomocą murowanego kanału wentylacyjnego o wym. 270x140.

4.14. Wyposażenie kotlowni.

W pomieszczeniu kotlowni, poza wyposażeniem technologicznym przewidziano:

- wpusty ściekowe $\varnothing 100 \mathrm{~mm}$
- zlew prostokątny emaliowany
- zawór czerpalny ze złączką do węża $\varnothing 15 \mathrm{~mm}$
- gaśnicę proszkową 6 kg .

5. IZOLACJE TERMICZNE

Całość instalacji musi być izolowana termicznie. Wszystkie rurociągi należy zaizolować termicznie izolacją odporną na temperaturę $100^{\circ} \mathrm{C}$ i współczynniku przewodności cieplnej $\lambda=$ $0,035 \mathrm{~W} / \mathrm{mK}$. Grubość izolacji wg poniższej tabelki:

Lp.	Rodzaj przewodu lub komponentu	Minimalna grubośc izolacji $\underset{\left(\text { material } 0,035 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})^{\text {ciepl }}\right.}{ }$
1	Średnica wewnętrzna do 22 mm	20 mm
2	Średnica wewnętrzna od 22 do 35 mm	30 mm
3	Średnica wewnętrzna od 35 do 100 mm	równa średnicy wewnętrznej rury
4	Średnica wewnętrzna ponad 100 mm	100 mm
5	Przewody i armatura wg poz. 1-4 przechodzace przez ściany lub stropy, skrzyżowania przewodów	50\% wymagań z poz. 1-4
6	Przewody ogrzewań centralnych, przewody wody ciepłej i cyrkulacji instalacji ciepłej wody użytkowej wg poz. 1-4, ułożone w komponentach budowlanych między ogrzewanymi pomieszczeniami różnych użytkowników	50\% wymagan z poz. 1-4
7	Przewody wg poz. 6 ułożone w podłodze	6 mm
8	Przewody ogrzewania powietrznego (ułożone w części ogrzewanej budynku)	40 mm
9	Przewody ogrzewania powietrznego (ułożone w części nieogrzewanej budynku)	80 mm
10	Przewody instalacji wody lodowej prowadzone wewnątrz budynku ${ }^{2}$)	50% wymagań z poz. 1-4
11	Srednica wewnętrzna do 22 mm	20 mm

Uwaga:

1) przy zastosowaniu materiału izolacyjnego o innym współczynniku przenikania ciepła niż podano w tabeli należy odpowiednio skorygować grubość warstwy izolacyjnej,
2) izolacja cieplna wykonana jako powietrznoszczelna.

Preferowana izolacja prefabrykowana ze spienionej pianki polietylenowej w płaszczu ochronnym z foli np. FRZ firmy THERMAFLEX - dla średnic poniżej DN32 oraz izolacja z prefabrykowanej wełny mineralnej w plaszczu ochronnym z foli aluminiowej dla średnic pozostałych.

Rurociągi rozprowadzone podposadzkowo izolować otuliną prefabrykowaną np. typu Thermacompact S o gr. 6 mm .

6. PRZEJŚCIA PRZEZ PRZEGRODY P.POŻ

1. Wszystkie przejścia rurociągów w miejscu przejścia przez elementy oddzielenia przeciwpożarowego należy zabezpieczyć do odporności ogniowej przegrody.
2. Zamocowania przewodów do elementów budowlanych wykonać z materiałów niepalnych, zapewniających przejęcie sily powstającej w przypadku pożaru w czasie nie krótszym niż wymagany dla klasy odporności ogniowej przewodu.
3. Przy przejściu przez przegrody oddzielenia pożarowego rurami stalowymi należy uszczelnić ogniochronną masą uszczelniającą elastyczną np. CP 601S firmy HILTI.
4. W przypadku poprowadzenia rur palnych poprzez przegrodę oddzielenia pożarowego należy zabezpieczyć je obejmami p.poż. np. firmy HILTI typu CP 648 montowanymi z każdej strony ściany oddzielenia p.poż.
5. Dla rur palnych o mniejszej średnicy niż 32 mm , należy stosować ogniochronną pęczniejącą masę uszczelniającą np. CP 611A firmy HILTI o klasie odporności ogniowej EI 120. Masę tę można łączyć z zaprawą ogniochronną np. CP636 o EI 120.
6. W przypadku prowadzenia rur z np. PCW, PP, PE o średnicach zewnętrznych od 32 do 200 mm i grubościach ścianek od 1,8 do $11,8 \mathrm{~mm}$ można stosować również kasety ogniochronne PROMASTOP®-I slużące do uszczelniania przejść instalacyjnych rur z tworzyw sztucznych w ścianach i stropach wykonanych z cegły pełnej, dziurawki, z betonu zwykłego lub z gazobetonu o grubości nie mniejszej niż 10 cm w przypadku ścian oraz 15 cm w przypadku stropów. Przejścia instalacyjne rur z tworzyw sztucznych uszczelnione kasetami ogniochronnymi PROMASTOP®-I spełniają wymagania klasy odporności ogniowej EI 120. Oznacza to, że szczelność i izolacyjność ogniowa przejścia nie jest mniejsza niż 120 minut. W przypadku przejść w stropach i ścianach o wymaganej gazo- i dymoszczelności przestrzeń między rurami a ścianami otworu powinna być przed założeniem kaset dokładnie wypełniona zaprawą cementową.

Zabezpieczenia te należy stosować w przypadku występowania przejść przez przegrody oddzielenia pożarowego.

7. WYMAGANIA DLA PODPÓR I ZAWIESI

7.1 Wymagania ogólne.

Wszystkie podparcia rur powinny spełniać wymagania niniejszych warunków technicznych.
Rurociągi mają być prawidłowo podparte, zakotwiczone i prowadzone dla uniknięcia niepotrzebnego ugięcia, nadmiernych drgań oraz aby chronić zarówno rury jak połączone z nimi urządzenia od nadmiernych obciążeń i naprężeń dylatacyjnych.
Wytrzymałość podpory ustala się w oparciu o ciężar rury, ciężar przenoszonego w niej czynnika lub medium użytego do prób, w oparciu o większą wartość, ciężar izolacji, gdy takowa występuje, plus wszystkie występujące siły od wydłużeń cieplnych.
Rurociągi należy podpierać stosując, gdzie to jest możliwe, kombinacje podpór o wspólnej wysokości. Nie izolowane rurociągi ze stali węglowej mogą być opierane bezpośrednio na elementach podporowych.
Należy unikać opierania jednego ciągu rur na drugim. Podpory podlegają zatwierdzeniu przez projektanta instalacji i inspektora nadzoru.

7.2 Material.

Wszystkie podpory i wieszaki dla rur o temperaturze do $350^{\circ} \mathrm{C}$ należy wykonać ze stali węglowej gatunków handlowych o granicy plastyczności minimum $85 \mathrm{~N} / \mathrm{m} 2$ przy $350^{\circ} \mathrm{C}$. Części podpory lub wieszaka spawane bezpośrednio do rur ze stali stopowej, nierdzewnej lub z metali nieżelaznych powinny być zrobione z tego samego materiału co sam rurociąg. Wykonawca dostarcza materiał do wykonania i zainstalowania wszystkich podparć rur.
Wszystkie śruby „U" oraz śruby i nakrętki do podpór rurociągów powinny mieć pokrycie galwaniczne, zgodne z PN.

7.3 Wykonawstwo.

Podparcia rur mają być wykonane zgodnie z warunkami technicznymi i PN. Prefabrykowane podpory rurowe powinny mieć właściwe etykietki z numerem podpory.
Przed wykonaniem należy sprawdzić na miejscu i jeżeli to niezbędne poprawić wymiary podpór.
Wszystkie spawania, jeżeli nie podano inaczej, należy wykonać elektrycznie spoiną 5 mm .
Spawanie stali stopowych mają wykonywać wykwalifikowani spawacze.
Wszystkie gwinty powinny być metryczne, chyba że wskazano inaczej.

7.4 Wykończenia.

Po spawaniu wszystkie spoiny należy oczyścić szczotką stalową i śrutować dla usunięcia szlaki i rozprysków po spawaniu.

Podparcia wykonane ze stali węglowej należy przygotować, zagruntować i pomalować jak następuje.
Małe elementy oczyścić ręcznie, z jedną warstwą gruntu i jedną warstwą zewnętrzną wykańczającą.

W razie konieczności ponownego spawania - usunąć farbę.
Po spawaniu powierzchnie pomalować ponownie tym samym kolorem/farbą co istniejąca.

7.5 Uwagi montażowe.

Powierzchnie oparcia stalowych podpór ślizgowych należy oczyścić szczotką i przez śrutowanie, a przy zakładaniu posmarować obficie smarem grafitowym.
Podpory typu „but" spawa się do rury po ostatecznym ustawieniu jej odległości i wysokości. Tam gdzie to możliwe, należy unikać spawania butów do elementów podparcia, należy preferować połączenia skręcane śrubami.
Materiały jak drewno i liny mogą być używane jako tymczasowe podparcia, w czasie montażu.

7.6 Rozstaw zawiesi i podpór.

Odległości między podporami instalacji rurowych powinny wynosić: $1,5 \mathrm{~m}$ - dla średnic $15 \div$ $20 \mathrm{~mm}, 2,0 \mathrm{~m}$ - dla średnic $25 \div 32 \mathrm{~mm}, 2,5 \mathrm{~m}$ - dla średnic $40 \div 50 \mathrm{~mm}$.

Odległości między podporami instalacji kanałowych (wentylacyjnych) powinny wynosić nie więcej niż 150 mm od każdego kołnierza, pomiędzy kolejnymi podporami nie więcej niż 2 m .

8. WYMAGANIA I ZALECENIA

Wymagania BHP

Podczas montażu i eksploatacji instalacji należy zwracać bezwzględnie uwagę na przestrzeganie przepisów BHP dotyczących montażu instalacji na wysokości oraz pracy urządzeniach pod napięciem elektrycznym.

Wymagania higieniczno - sanitarne

Projektowana instalacja spełnia warunki wymagane przez obowiązujące przepisy sanitarne. Pomieszczenia techniczne nie są przeznaczone na stały pobyt ludzi.

Wymagania w zakresie montażu rozruchu, odbioru instalacji i eksploatacji

Montaż i odbiór instalacji należy wykonać zgodnie z dokumentacją techniczną i DTR urządzeń i zastosowanych materiałów. Rozruch kompleksowy powinien nastąpić po zakończeniu montażu instalacji w budynku. Do odbioru technicznego należy przystąpić po wykonaniu instalacji i
zgłoszeniu gotowości do odbioru. Odbiór obejmuje sprawdzenie kompletności wyposażenia i prawidłowości działania instalacji. Sprawdzenie działania obejmuje po wielogodzinnej pracy próbnej z zasady następujące czynności:

- sprawdzenie wartości temp. i ciśnienia w instalacjach wodnych i wentylacyjnych, ich zgodności z projektem, wymaganiami zastosowanych materiałów i urządzeń
- porównanie wartości zmierzonych z danymi wyszczególnionymi w zamówieniu urzą̨zeń kontrolę działania urządzeń regulacyjny
- sprawdzenie wartości zadziałania wszelkich urządzeń zabezpieczających i pomiarowych oraz ich poprawnego montażu
- sprawdzenie prawidłowości rozmieszczenia urządzeń napełniających i spustowych z uwagi na ich łatwy dostęp.

Wymagania w zakresie użytkowania instalacji

Warunkiem prawidłowej pracy instalacji i spełnienia wymagań stawianych w projekcie jest właściwa jej eksploatacja. Urządzenia są przystosowane do pracy automatycznej w ograniczonym zakresie, zatem niezbędny jest fachowy nadzór nad instalacjami podczas eksploatacji. Do utrzymania gotowości eksploatacyjnej instalacje i muszą być poddawane regularnej konserwacji. Obsługa i konserwacja powinny wykonywane przez personel z odpowiednimi kwalifikacjami zawodowymi zgodnie z obsługi użytkownika oraz dokumentacjami urządzeń i użytych materiałów.
Należy zwrócić uwagę na następujące punkty:

- szczelność połączeń rurociągów i urządzeń,
- kontrolę pracy urządzeń w tym wszelkich zabezpieczeń,
- kontrole temperatur i ciśnienia mediów z uwagi na dopuszczalne parametry wytrzymałościowe wbudowanych materiałów i urządzeń,
- sprawdzenie prowadzenia książki obsługi.

Wszelkie niezgodności należy bezwzględnie zgłaszać odpowiednim służbom nadzoru zakładowego.

Próba szczelności.
Próby szczelności wykonać zgodnie z Warunkami technicznymi wykonania i odbioru robót budowlano montażowych tom II Instalacje sanitarne i przemysłowe rozdzial 6.
Wykonawca podejmie wszelkie środki dla zapewnienia, że próby zostaną wykonane w sposób zgodny z przepisami bezpieczeństwa.

9. WYTYCZNE BRANŻOWE

9.1. Budowlano-konstrukcyine

- wykonać otwory w dachu, stropie i ścianach do prowadzenia instalacji, następnie otwory te zabezpieczyć przed wpływem czynników atmosferycznych
- zapewnić dojście serwisowe do wszystkich elementów instalacji sanitarnych, wymagających okresowej regulacji, przeglądu itp.;.
- wykonać fundament pod kocioł

9.2. Elektryczne

- wykonać zasilania elektryczne do wszystkich zaprojektowanych urządzeń (kocioł , pompy, stacja uzdatniania wody, palnik gazowy)
- wykonać instalację uziemiającą urządzenia m.in. kotły, pompy, komin

10. UWAGI KOŃCOWE

1. Przy robotach montażowych przestrzegać przepisów ppoż. i bhp, a w szczególności :

- Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 7 czerwca 2010 r. w sprawie ochrony przeciwpożarowej budynków, innych obiektów budowlanych i terenów (Dz.U. 2010 nr 109 poz. 719).
- Zarządzenia nr 7/74 Komendanta Głównego Straży Pożarnych z dnia $07.08 .1974 \mathrm{r} . \mathrm{w}$ sprawie wytycznych zabezpieczenia pożarowego procesów spawalniczych podczas prac remontowo - budowlanych
- Rozporządzenie Ministra Infrastruktury z dnia 6 lutego 2003 r. w sprawie bezpieczeństwa i higieny pracy podczas wykonywania robót budowlanych (dz. U. Nr 47 , poz. 401)
- Rozporządzenie Ministra Gospodarki z dnia 27 kwietnia 2000 r. w sprawie bezpieczeństwa i higieny pracy przy pracach spawalniczych (Dz. U. Nr 40 , poz. 470).

2. Próby szczelności instalacji gazowej, zagazowanie instalacji oraz sprawdzenie skuteczności działania ASBiG przeprowadzić przy udziale dostawcy gazu.
3. Dopuszcza się zamianę projektowanych urządzeń na jakościowo równoważne w zakresie parametrów, konstrukcji i materiału.
4. Do projektu załączono zestawienie urządzeń i podstawowych materiałów.

11. OBLICZENIA

do projektu technologii kotlowni gazowej dla Budynku Szkoły Podstawowej, Przedszkola oraz świetlicy Wiejskiej w m. Zgorzala (dz. nr ewid. 300) gmina Lesznowola.

Spis treści :

1. Zapotrzebowanie ciepła na cele ogrzewania i wentylacji
2. Zapotrzebowanie ciepla na cele cwu
3. Obliczeniowa moc ciepIna kotlowni
4. Dobór kotlów
5. Dobór naczynia przeponowego co
6. Dobór naczynia przeponowego et
7. Dobór pompy obiegowej co nr 1
8. Dobór pompy obiegowej co nr 2
9. Dobór pompy obiegowej ct (obieg pierwotny)
10. Dobór wymiennika ct
11. Dobór pompy obiegowej ct (obieg wtórny)
12. Dobór mieszaczy trójdrogowych co
13. Dobór podgrzewacza cw
14. Dobór pompy obiegowej cw
15. Dobór pompy cyrkulacyjnej cw
16. Dobór naczynia przeponowego ew
17. Dobór pompy obiegu kotla
18. Dobór zmiękczacza wody
19. Dobór zaworów bezpieczeństwa
20. Dobór komina
21. Dobór elementów wentylacyjnych
22. Zapotrzebowanie paliwa

I. ZAPOTRZEBOWANIE CIEPŁA NA CELE OGRZEWANIA

1. Zapotrzebowanie ciepla na cele ogrzewania

- zgodnie z projektem wewn. instalacji co zapotrzebowanie ciepla na cele ogrzewania dla przedmiotowego budynku wynosi:

$$
\mathrm{Q}_{\mathrm{CO}}=51,9 \mathrm{~kW}
$$

2. Zapotrzebowanie ciepla na cele wentylacii

- zgodnie z projektem wentylacji mechanicznej zapotrzebowanie ciepła na cele wentylacji dla przedmiotowego budynku wynosi:
$\mathrm{Q}_{\mathrm{CT}}=63,0 \mathrm{~kW}$

II. ZAPOTRZEBOWANIE CIEPLA NA CELE CWU

1. Dane wyiściowe:

- Zapotrzebowanie CWU : q = $150 \mathrm{l} / \mathrm{h}$
- obliczeniowe temperatury wody użytkowej: $\mathrm{t}_{\mathrm{cw}} / \mathrm{t}_{\mathrm{zw}}=55 / 5^{\circ} \mathrm{C}$

4. Zapotrzebowanie ciepla.

$\mathrm{Qh}=\mathrm{Gh} \times \mathrm{Cx} \Delta \mathrm{t}$
$\mathrm{Qh}=150,0 \times 1 \times(55-5) \times 1,163=8723 \mathrm{~W}$
$\mathrm{Qh}=8,7 \mathrm{~kW}$

III. OBLICZENIOWA MOC CIEPLNA KOTLOWNI

1. Dane wyiściowe.

- oblicz. zapotrzebowanie ciepła na cele ogrzewania: $\mathrm{Qco}=51,9 \mathrm{~kW}$ wentylacji: $\mathrm{Q}_{\mathrm{CT}}=63,0 \mathrm{~kW}$
$\mathrm{cwu}: \mathrm{Qcw}=8,7 \mathrm{~kW}$

2. Obliczeniowa moc cieplna kotlowni.

$$
\begin{aligned}
& \mathrm{Qk}=\mathrm{Qco}+\mathrm{Q}_{\mathrm{CT}}+\mathrm{Qcw} \\
& \mathrm{Qk}=51,9+63,0+8,7=123,6 \mathrm{~kW}
\end{aligned}
$$

IV. DOBÓR KOTLA

1. Dane wyiściowe.

- oblicz. moc cieplna kotłowni : $\mathrm{Q}_{\mathrm{K}}=123,6$
- oblicz. temp. czynnika grzejnego: $\mathrm{tz} / \mathrm{tp}=80 / 60^{\circ} \mathrm{C}$

2. Dobór kotlów.

- przyjęto kocioł wodny niskotemperaturowy kondensacyjny firmy BUDERUS typu LOGANO plus GB312 o mocy cieplnej nominalnej 160 kW z wbudowanym palnikiem modulowanym typu PREMIX.

V. DOBÓR NACZYNIA PRZEPONOWEGO CO

1. Dane wyiściowe.

- oblicz. zapotrzebowanie ciepla : Qco $+\mathrm{ct}+\mathrm{cw}=154,2 \mathrm{~kW}$
- grzejniki stalowe plytowe
- ciśnienie statyczne instalacji: $\mathrm{pst}=0,77$ bar
- dopuszczalne ciśnienie robocze : pd=3 bar
- pojemność kotła: $\mathrm{Vk}=20 \mathrm{l}$
- ubytki eksploatacyjne: $\mathrm{E}=1 \%$

2. Pojemność instalacji CO.

- dla $\mathrm{Q}=51,9 \mathrm{~kW}$ i grzejników płytowych pojemność instalacji co wynosi:
$\mathrm{Vco}=483,01$

3. Pojemność zladu CO.

$V z t=V c o+V k$
$\mathrm{Vzl}=483,0+20,0=503,01$

4. Pojemność użytkowa naczynia.

$\mathrm{Vu}=1,1 \times \mathrm{V} \times \gamma \times \Delta \mathrm{V}$
$\mathrm{Vu}=1,1 \times 503,0 \times 1 \times 0,0224=12,41$

5. Pojemność calkowita naczynia.

$$
\begin{gathered}
\mathrm{pd}+0,1 \\
\mathrm{Vc}=\mathrm{Vu} \times-\cdots-\mathrm{pst} \\
\mathrm{Vc}=12,4 \times \frac{3+1}{3-0,77}=22,21
\end{gathered}
$$

6. Pojemność użytkowa naczynia z rezerwa eksploatacyina.

$$
\begin{aligned}
& \text { Vur }=V u+V \times E \times 10 \\
& \text { Vur }=12,4+0,50 \times 1 \times 10=17,41
\end{aligned}
$$

7. Ciśnienie wstepne instalacii calkowitei pojemności z rezerwa naczynia wzbiorczego przeponowego.
$\mathrm{pr}=\left(\frac{p d+1}{1+\frac{V u}{V u r\left(\frac{p d+1}{p d-p}-1\right)}}\right)-1$
$\mathrm{pr}=\left(\frac{3+1}{1+\frac{12,4}{17,4\left(\frac{3+1}{3-0,77}-1\right)}}\right)-1=1,11$ bar

8. Pojemność naczynia wzbiorczego z uwzglednieniem ubytków eksploatacyinych.

$$
\begin{aligned}
& \mathrm{Vnr}=\operatorname{Vur} \frac{p d+1}{p d-p r} \\
& \mathrm{Vnr}=17,4 \times \frac{3+1}{3-1,11}=36,81
\end{aligned}
$$

9. Dobór naczynia

- przyjęto naczynie wzbiorcze przeponowe typu REFLEX - NG/50
o wielkości :
- $\mathrm{Vn}=501$
- $\mathrm{Dn}=409 \mathrm{~mm}$
- $\mathrm{H}=469 \mathrm{~mm}$
- $\mathrm{dn}=20 \mathrm{~mm}$
- $\mathrm{pd}=0,6 \mathrm{MPa}$
- $\quad \mathrm{pst}=0,15 \mathrm{MPa}$.

VI. DOBÓR NACZYNIA PRZEPONOWEGO CT

1. Dane wyiściowe.

- oblicz. zapotrzebowanie ciepła : Qct $=63,0 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : $\mathrm{tz} / \mathrm{t}_{\mathrm{p}}=70 / 50^{\circ} \mathrm{C}$
- ciśnienie statyczne instalacji: $\mathrm{pst}=0,65 \mathrm{bar}$
- dopuszczalne ciśnienie robocze : $\mathrm{pd}=3$ bar
- pojemność instalacji ct : Vct = 1721
- ubytki eksploatacyjne: $\mathrm{E}=1 \%$

2 Pojemność użytkowa naczynia.

$\mathrm{Vu}=1,1 \times \mathrm{Vx} \gamma \mathrm{x} \Delta \mathrm{V}$
$\mathrm{Vu}=1,1 \times 172,0 \times 1 \times 0,0224=4,21$
5. Pojemność calkowita naczynia.

$$
\begin{gathered}
\mathrm{Vc}=\mathrm{Vu} \times \frac{\mathrm{pd}+0,1}{\mathrm{pd}-\mathrm{pst}} \\
3+1 \\
\mathrm{Vc}=4,2 \times---------1=7,11 \\
3-0,65
\end{gathered}
$$

6. Pojemność użytkowa naczynia z rezerwa eksploatacyina.

Vur $=V u+V \times E \times 10$

Vur $=4,2+0,17 \times 1 \times 10=5,91$
7. Ciśnienie wstepne instalacji calkowitej pojemności z rezerwa naczynia wzbiorczego przeponowego.
$\mathrm{pr}=\left(\frac{p d+1}{1+\frac{V u}{\operatorname{Vur}\left(\frac{p d+1}{p d-p}-1\right)}}\right)-1$
$\mathrm{pr}=\left(\frac{3+1}{1+\frac{4,2}{5,9\left(\frac{3+1}{3-0,65}-1\right)}}\right)-1=0,99$ bar

8. Pojemność naczynia wzbiorczego z uwzglednieniem ubytków eksploatacyinych.

$$
\begin{aligned}
& \mathrm{Vnr}=\operatorname{Vur} \frac{p d+1}{p d-p r} \\
& \mathrm{Vnr}=5,9 \times \frac{3+1}{3-0,99}=11,7
\end{aligned}
$$

9. Dobór naczynia

- przyjęto naczynie wzbiorcze przeponowe typu REFLEX -- S18/10
o wielkości :
- $\quad \mathrm{Vn}=181$
- $\mathrm{Dn}=280 \mathrm{~mm}$
- $\mathrm{H}=378 \mathrm{~mm}$
- $\quad \mathrm{dn}=20 \mathrm{~mm}$
- $\mathrm{pd}=1,0 \mathrm{MPa}$
$-\quad \mathrm{pst}=0,15 \mathrm{MPa}$.

VII. DOBÓR POMPY OBIEGOWEJ CO NR 1

1. Dane wyiściowe.

- oblicz. zapotrzebowanie ciepła dla instalacji grzejnikowej: $\mathrm{Q}_{\mathrm{COI}}=27,4 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : $\mathrm{tz} / \mathrm{t}_{\mathrm{p}}=70 / 50^{\circ} \mathrm{C}$
- opór instalacji $\mathrm{h}_{\mathrm{CO} 1}=1,30 \mathrm{msw}$
- opór instalacji kotlowni : przyjęto $h_{k}=1,0 \mathrm{msw}$

2. Obliczeniowa wydajność pompy.

$$
V p=\frac{1,15 \times--------}{1000 \times \Delta t}
$$

3. Obliczeniowa wysokość podnoszenia pompy.

$\mathrm{Hp}>\mathrm{h}_{\mathrm{CO}}+\mathrm{h}_{\mathrm{k}}$
$\mathrm{Hp}=1,30+1,0=2,30 \mathrm{msw}$

4. Dobór pompy.

- przyjęto pompę obiegową co nr 1 firmy GRUNDFOS typu ALPHA 2 25-60 130
o parametrach:

$$
\begin{aligned}
& \mathrm{Vp}=1,35 \mathrm{~m}^{3} / \mathrm{h} \\
& \mathrm{Hp}=2,30 \mathrm{msw} \\
& \mathrm{Ns}=22,1 \mathrm{~W} / 1 \times 230 \mathrm{~V}
\end{aligned}
$$

VIII. DOBÓR POMPY OBIEGOWEJ CO NR 2

1. Dane wyiściowe.

- oblicz. zapotrzebowanie ciepła dla instalacji ogrzewania podłogowego : $\mathrm{Q}_{\mathrm{CO} 2}=25,1 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : $\mathrm{tz} / \mathrm{t}_{\mathrm{p}}=70 / 50^{\circ} \mathrm{C}$
- opór instalacji : $\mathrm{h}_{\mathrm{CO} 2}=1,06 \mathrm{msw}$
- opór instalacji kotłowni : przyjęto $\mathrm{h}_{\mathrm{k}}=1,0 \mathrm{msw}$

2. Obliczeniowa wydajność pompy.

$$
\mathrm{Vp}=\frac{1,15 \times \mathrm{Q}}{1000 \times \Delta \mathrm{t}}
$$

3. Obliczeniowa wysokość podnoszenia pompy.

$\mathrm{Hp}>\mathrm{h}_{\mathrm{co}}+\mathrm{h}_{\mathrm{k}}$
$\mathrm{Hp}=1,06+1,0=2,06 \mathrm{msw}$

4. Dobór pompy.

- przyjęto pompę obiegową co nr 2 firmy GRUNDFOS typu ALPHA 2 25-60 130
o parametrach:

$$
\begin{aligned}
& \mathrm{Vp}=1,24 \mathrm{~m}^{3} / \mathrm{h} \\
& \mathrm{Hp}=2,06 \mathrm{msw} \\
& \mathrm{Ns}=18,5 \mathrm{~W} / 1 \times 230 \mathrm{~V}
\end{aligned}
$$

IX. DOBÓR POMPY OBIEGOWEJ CT (obieg pierwotny)

1. Dane wyiściowe.

- oblicz. zapotrzebowanie ciepła dla instalacji ct: $\mathrm{Q}_{\mathrm{CT}}=63,0 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : $\mathrm{tz} / \mathrm{t}_{\mathrm{p}}=80 / 60^{\circ} \mathrm{C}$
- opór wymiennika : hw $=0,11$
- opór instalacji kotłowni : przyjęto $h_{k}=1,5 \mathrm{msw}$

2. Obliczeniowa wydajność pompy.

$$
V p=\frac{1,15 \times-------}{1000 \times \Delta t}
$$

$$
\mathrm{Vp}=\frac{1,15 \times 63,0 \times 860}{1000 \times 1 \times(80-60)}=3,12 \mathrm{~m}^{3} / \mathrm{h}
$$

3. Obliczeniowa wysokość podnoszenia pompy.

$\mathrm{Hp}>\mathrm{h}_{\mathrm{k}}+\mathrm{hw}$
$\mathrm{Hp}=1,5+0,11=1,66 \mathrm{msw}$

4. Dobór pompy.

- przyjęto pompę obiegową ct firmy GRUNDFOS typu MAGNA 32-60
o parametrach:
$\mathrm{Vp}=3,12 \mathrm{~m}^{3} / \mathrm{h}$
$\mathrm{Hp}=1,66 \mathrm{msw}$
$\mathrm{Ns}=32 \mathrm{~W} / 1 \times 230 \mathrm{~V}$

X. DOBÓR WYMIENNIKA CT

1. Dane wyiściowe.

- oblicz. moc cieplna nagrzewnic : $63,0 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego po stronie pierwotnej : $t_{1} / t_{2}=80 / 60^{\circ} \mathrm{C}$
-oblicz. temp. czynnika grzejnego po stronie wtórnej : $\mathrm{t}_{3} / \mathrm{t}_{4}=70 / 50^{\circ} \mathrm{C}$
-czynnik grzejny : 30\% roztwór glikolu etylenowego.

2. Ilość wody w obiegu pierwotnym.

$$
\mathrm{G}_{1}=\frac{\mathrm{Q}}{\mathrm{C} \times-----t_{1}}
$$

3. Ilość wody w obiegu wtórnym.

$$
\mathrm{G}_{2}=\frac{\mathrm{Q}}{\mathrm{Cx} \Delta \mathrm{t}_{2}}
$$

$$
\mathrm{G}_{2}=\frac{63,0 \times 860}{1000 \times-------------1 \times(70-50)}=2,71 \mathrm{~m}^{3} / \mathrm{h}
$$

4. Dobór wymiennika.

Dla w/w danych przyjęto wymiennik płytowy firmy SECESPOL typu LB31-130-5/4" o wielkości :

- $\mathrm{Q}=65,0 \mathrm{~kW}$
- $\mathrm{F}_{\mathrm{o}}=4,0 \mathrm{~m}^{2}$
- $\mathrm{d}_{1} / \mathrm{d}_{2}=32 / 32 \mathrm{~mm}$
- $\mathrm{hw}_{1}=1,09 \mathrm{kPa}$
$-\mathrm{hw}_{2}=1,26 \mathrm{kPa}$

XI. DOBÓR POMPY OBIEGOWEJ CT (obieg wtórny)

1. Dane wyiściowe.

- oblicz. moc cieplna nagrzewnic: $\mathrm{Q}_{\mathrm{CT}}=63,0 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : $\mathrm{tz} / \mathrm{t}_{\mathrm{p}}=70 / 50^{\circ} \mathrm{C}$
- opór wymiennika: $\mathrm{h}_{\mathrm{w}}=0,13 \mathrm{msw}$
- opór instalacji ct : $=\mathrm{h}_{\mathrm{ct}}=2,99 \mathrm{msw}$

2. Obliczeniowa wydajność pompy.

$$
V p=\begin{aligned}
& 1,15 \times---------
\end{aligned}
$$

$1000 \mathrm{x} \Delta \mathrm{t}$
$V p=\frac{1,15 \times 63,0 \times 860}{1000 \times 1 \times-\cdots(70---\cdots 0)}=2,71 \mathrm{~m}^{3} / \mathrm{h}$

3. Obliczeniowa wysokość podnoszenia pompy.

$\mathrm{Hp}>\mathrm{h}_{\mathrm{w}}+\mathrm{h}_{\mathrm{ct}}$
$\mathrm{Hp}=0,13+2,99=3,12 \mathrm{msw}$

4. Dobór pompy.

- przyjęto pompę obiegową ct firmy GRUNDFOS typu MAGNA 32-60
o parametrach:
$\mathrm{Vp}=2,71 \mathrm{~m}^{3} / \mathrm{h}$
$\mathrm{Hp}=3,12 \mathrm{msw}$
$\mathrm{Hp}=3,12 \mathrm{msw}$
$\mathrm{Ns}=49,3 \mathrm{~W} / 1 \times 230 \mathrm{~V}$
w wykonaniu dla glikolu etylenowego 30%

XII. DOBÓR MIESZACZY TRÓJDROGOWYCH CO

1. Dane wyiściowe.

- oblicz. moc cieplna : $\mathrm{Q}_{\mathrm{CO}}=27,4 \mathrm{~kW}$

$$
\mathrm{Q}_{\mathrm{co} 2}=25,1 \mathrm{~kW}
$$

- oblicz. różnica temperatur : $\Delta \mathrm{t}=20^{\circ} \mathrm{C}$

2. Obliczenie ilości czynnika grzejnego.

$$
G=\frac{Q \times 860}{1000 \times-------1}
$$

$\mathrm{G}_{\mathrm{CO} 1}=\frac{27,4 \times 860}{1000 \times 1 \times-\cdots-\cdots}=1,18 \mathrm{~m}^{3} / \mathrm{h}$

$$
\mathrm{G}_{\mathrm{CO} 2}=\frac{25,1 \times 860}{1000 \times-\cdots-\cdots 20}=1,08 \mathrm{~m}^{3} / \mathrm{h}
$$

2. Dobór mieszaczy.

- dla obiegu co nr 1 przyjęto mieszacz trójdrogowy firmy DANFOSS typu HRB $3 / \varnothing 32 \mathrm{~mm}$ z siłownikiem AMB 162
- dla obiegu co nr 2 przyjęto mieszacz trójdrogowy firmy DANFOSS typu HRB $3 / \varnothing 32 \mathrm{~mm}$ z siłownikiem AMB 162

XIII. DOBÓR PODGRZEWACZA CW

1. Dane wyiściowe

- oblicz. zapotrzeb. CWU: $\mathrm{G}_{\mathrm{CW}}=150,0 \mathrm{l} / \mathrm{h}$
- oblicz. zapotrzeb. ciepła: $\mathrm{Q}_{\mathrm{CW}}=8,7 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego $t_{z} / t_{p}=80 / 60^{\circ} \mathrm{C}$
- oblicz. temp. wody użytkowej: $\mathrm{t}_{\mathrm{cw}} / \mathrm{t}_{\mathrm{zw}}=55 / 5^{\circ} \mathrm{C}$

2. Dobór podgrzewaczy

- przyjęto podgrzewacz pionowy firmy BUDERUS typu Logalux SU 400/5 o wielkości:
$\mathrm{Vn}=4001$
$\mathrm{Q}=56 \mathrm{~kW}$
$\mathrm{t}_{\mathrm{z}} / \mathrm{t}_{\mathrm{p}}=80 / 60^{\circ} \mathrm{C}$
$\mathrm{Dn}=670 \mathrm{~mm}$ (z izolacją)
$\mathrm{H}=1835 \mathrm{~mm}$ (z izolacją)

XIV. DOBÓR POMPY OBIEGOWEJ CW

1. Dane wyiściowe.

- oblicz. moc wymiennika : Qcw $=56 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : $\mathrm{t}_{z} / \mathrm{t}_{\mathrm{p}}=80 / 60{ }^{\circ} \mathrm{C}$
- opór obiegu grzewczego : przyjęto $\mathrm{h}=3,0 \mathrm{msw}$.

2. Obliczeniowa wydajność pompy.

3. Obliczeniowa wysokość podnoszenia pompy.

$\mathrm{Hp} \geq \mathrm{h}$
$\mathrm{Hp}=3,0 \mathrm{msw}$

4. Dobór pompy.

- przyjęto pompę obiegową CW firmy GRUNDFOS typu MAGNA 25-60
o parametrach:
$\mathrm{Vp}=2,4 \mathrm{~m}^{3} / \mathrm{h}$
$\mathrm{Hp}=3,0 \mathrm{msw}$
$\mathrm{Ns}=45,7 \mathrm{~W} / 1 \times 230 \mathrm{~V}$

XV. DOBÓR POMPY CYRKULACYJNEJ CW

1. Dane wyiściowe.

- oblicz. zapotrzebowanie cwu : $\mathrm{Gcw}=150 \mathrm{l} / \mathrm{h}$
- opór obiegu cyrkulacyjnego : przyjęto hc $=3,0 \mathrm{msw}$.

2. Obliczeniowa wydajność pompy.

$\mathrm{Vp}=\mathrm{Gcw}$
$\mathrm{Vp}=150 \mathrm{l} / \mathrm{h}$
$\mathrm{Vp}=0,15 \mathrm{~m}^{3} / \mathrm{h}$

3. Obliczeniowa wysokość podnoszenia pompy.

$\mathrm{Hp} \geq$ hc
$\mathrm{Hp}=3,0 \mathrm{msw}$

4. Dobór pompy.

- przyjęto pompę cyrkulacyjną cw firmy GRUNDFOS typu ALPHA 2 25-60 N 130 o parametrach:

$$
\begin{aligned}
\mathrm{Vp} & =0,50 \mathrm{~m}^{3} / \mathrm{h} \\
\mathrm{Hp} & =3,0 \mathrm{msw} \\
\mathrm{Ns} & =13,6 \mathrm{~W} / 1 \times 230 \mathrm{~V}
\end{aligned}
$$

XVI. DOBÓR NACZYNIA PRZEPONOWEGO CW

1. Dane wyiściowe.

- pojemność podgrzewacza: $V=4001$
- oblicz. temp. wody użytkowej : tcw/tzw $=55 / 5^{\circ} \mathrm{C}$
- jedn. przyrost objętości : $\Delta \mathrm{V}=0,0142$
- maks. ciśnienie robocze $\mathrm{CW}: \mathrm{pmax}=0,6 \mathrm{MPa}$
- ciśnienie wstępne w naczyniu : po $=0,3 \mathrm{MPa}$

2. Pojemność użytkowa naczynia.

$\mathrm{Vu}=1,1 \times \mathrm{V} \times \varsigma \times \Delta \mathrm{V}$
$\mathrm{Vu}=1,1 \times 400 \times 1 \times 0,0142=6,21$
3. Pojemność calkowita naczynia.

$$
\begin{array}{r}
\mathrm{Vc}=\mathrm{Vu} \times \frac{\mathrm{pmax}+0,1}{\mathrm{pmax}-\mathrm{-}+---\mathrm{po}} \\
0,6+0,1
\end{array}
$$

$$
\mathrm{Vc}=6,2 \times \frac{\cdots}{0,6-0,3}=14,51
$$

4. Dobór naczynia.

- przyjęto naczynie wzbiorcze przeponowe typu REFIX DD18 o wielkości:

$$
\mathrm{Vc}=181
$$

$$
\mathrm{dn}=20 \mathrm{~mm}
$$

$$
\mathrm{D}=280 \mathrm{~mm}
$$

$$
\mathrm{H}=395 \mathrm{~mm}
$$

$$
\mathrm{p}_{\text {dop }}=1,0 \mathrm{MPa}
$$

$$
\mathfrak{t}_{\text {dop }}=70^{\circ} \mathrm{C}
$$

XVII. DOBÓR POMP OBIEGU KOTLA

1. Dane wyiściowe.

- moc cieplna kotła: $\mathrm{Q}_{\mathrm{k}}=160 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : $\mathrm{tz} / \mathrm{t}_{\mathrm{p}}=80 / 60^{\circ} \mathrm{C}$
- opór kotla : $\mathrm{h}_{\mathrm{ko}}=1,0 \mathrm{msw}$
- opór instalacji kotłowni : przyjęto $h_{k}=1,0 \mathrm{msw}$

2. Obliczeniowa wydainość pompy.

3. Obliczeniowa wysokość podnoszenia pompy.

$\mathrm{Hp}>\mathrm{h}_{\mathrm{ko}}+\mathrm{h}_{\mathrm{k}}$
$\mathrm{Hp}=1,0+1,0=2,0 \mathrm{msw}$

4. Dobór pompy.

- przyjęto pompe firmy GRUNDFOS typu MAGNA 32-80
o parametrach:

$$
\begin{aligned}
& \mathrm{Vp}=6,9 \mathrm{~m}^{3} / \mathrm{h} \\
& \mathrm{Hp}=2,0 \mathrm{msw} \\
& \mathrm{Ns}=85,4 \mathrm{~W} / 1 \times 230 \mathrm{~V}
\end{aligned}
$$

XVIII. DOBÓR ZMIĘKCZACZA WODY

1. Dane wyiściowe.

- pojemność zładu: Vzt = 503,01
- czas napełniania instalacji: przyjęto $t=1 \mathrm{~h}$

$$
\begin{aligned}
& V p=\frac{1,15 \times--------}{1000 \times \Delta t}
\end{aligned}
$$

2. Obliczeniowa przepustowość zmiekczacza.

$\mathrm{Vzm}=\frac{V z l}{t}$
$\mathrm{Vzm}=\frac{0,50}{1}=0,50 \mathrm{~m}^{3} / \mathrm{h}$

3. Dobór zmiekczacza.

- z katalogu przyjęto demineralizator firmy INWATER
typu IWR 25 MB o wydajności $\mathrm{Q}_{\max }=0,5 \mathrm{~m}^{3} / \mathrm{h}$.

XIX. DOBÓR ZAWORÓW BEZPIECZEŃSTWA

1. Zawór na kotle 160 kW

1.1. Dane wyiściowe.

- moc cieplna kotła: $\mathrm{Qk}=160 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : $\mathrm{tz} / \mathrm{tp}=80 / 60^{\circ} \mathrm{C}$
- skorygowany współczynnik wypływu dla zaworów typu SYR : $\alpha c=0,36$
- dopuszczalne ciśnienie robocze czynnika grzejnego : $\mathrm{pl}=0,3 \mathrm{MPa}$
- ciśnienie wypływu (otoczenia) : $\mathrm{p} 2=0$

1.2. Obliczeniowa przepustowość zaworu.

$G=\frac{Q}{C------\quad .}$
$G=\frac{160 \times 860}{1 \times-\cdots(80-60)}=6880 \mathrm{~kg} / \mathrm{h}$

1.3. Teoretyczna jednostkowa przepustowość zaworu.

```
\(\mathrm{qm}=1414,5 \times \mathrm{V}(\mathrm{p} 1-\mathrm{p} 2) \times \gamma\)
\(\mathrm{qm}=1414,5 \times \overline{\mathrm{V}(0,3-0) \times 971,8}=24152 \mathrm{~kg} / \mathrm{m}^{2} \times \mathrm{s}\)
```


1.4. Obliczeniowy przekrói gniazda zaworu.

$F=\frac{G}{\text { qm } \times-------c c}$
6880

1.5. Obliczeniowa średnica gniazda zaworu.

$$
\mathrm{dg}=\mathrm{V} \frac{4 \times \mathrm{Fg}}{\pi}
$$

$\mathrm{dg}=\mathrm{V} \frac{\overline{4 \times 0,0002198}}{3,14}$
$\mathrm{dg}=0,017 \mathrm{~m}$
$\mathrm{dg}=17,0 \mathrm{~mm}$

1.6. Dobór zaworu.

- przyjęto zawór bezpieczeństwa membranowy typu SYR1915 o wielkości :

$$
\mathrm{d} 1 \times \mathrm{d} 2=25 \times 32 \mathrm{~mm}
$$

$$
\mathrm{dg}=20,0 \mathrm{~mm}
$$

$$
\mathrm{p}=0,30 \mathrm{MPa} .
$$

$$
\alpha_{c}=0,40
$$

2. Zawór na wymienniku 65 kW

2.1. Dane wyiściowe.

- moc cieplna wymiennika: $\mathrm{Qk}=65,0 \mathrm{~kW}$
- oblicz. temp. czynnika grzejnego : tz/tp $=70 / 50^{\circ} \mathrm{C}$
- skorygowany współczynnik wypływu dla zaworów typu SYR : $\alpha c=0,27$
- dopuszczalne ciśnienie robocze czynnika grzejnego : $\mathrm{p} 1=0,3 \mathrm{MPa}$
- ciśnienie wypływu (otoczenia) : $\mathrm{p} 2=0$

2.2. Obliczeniowa przepustowość zaworu.

$$
G=\frac{Q}{C-----}
$$

$$
\mathrm{G}=\frac{65,0 \times 860}{1 \times-\cdots(70-50)}=2795 \mathrm{~kg} / \mathrm{h}
$$

2.3. Teoretyczna jednostkowa przepustowość zaworu.

$$
\begin{aligned}
& \mathrm{qm}=1414,5 \times \overline{\mathrm{V}(\mathrm{p} 1-\mathrm{p} 2) \times \gamma} \\
& \mathrm{qm}=1414,5 \times \overline{\mathrm{V}(0,3-0) \times 977,8}=24226 \mathrm{~kg} / \mathrm{m}^{2} \times \mathrm{s}
\end{aligned}
$$

2.4. Obliczeniowy przekrój gniazda zaworu.

$$
\begin{aligned}
& \text { G } \\
& \mathrm{F}= \\
& \text {------------ } \\
& q m \times \alpha c
\end{aligned}
$$

$$
F=\frac{2795}{24226 \times-\cdots-\cdots-\cdots-\cdots-\cdots-\cdots}=0,000119 \mathrm{~m}^{2}
$$

2.5. Obliczeniowa średnica gniazda zaworu.

$\mathrm{dg}=\mathrm{V} \frac{4 \mathrm{xFg}}{\pi}$
$\mathrm{dg}=\mathrm{V} \frac{\overline{4 \times 0,000119}}{3,14}$
$\mathrm{dg}=0,012 \mathrm{~m}$
$\mathrm{dg}=12 \mathrm{~mm}$

2.6. Dobór zaworu.

- przyjęto zawór bezpieczeństwa membranowy typu SYR1915 o wielkości : $\mathrm{d} 1 \mathrm{xd} 2=20 \times 25 \mathrm{~mm}$
$\mathrm{dg}=14,0 \mathrm{~mm}$
$\mathrm{p}=0,30 \mathrm{MPa}$.
$\alpha_{c}=0,36$

3. Zawór na podgrzewaczu CW.

3.1. Dane wyiściowe.

- oblicz. wydajność podgrzewacza : Gcw $=1376 \mathrm{~kg} / \mathrm{h}$
- pojemność podgrzewacza: $\mathrm{V}=4001$
- dop. temperatura cwu: $\mathrm{td}=60^{\circ} \mathrm{C}$
-skorygowany współczynnik wypływu: $\alpha c=0,20$
- dopuszczalne ciśnienie robocze $\mathrm{CWU}: \mathrm{pr}=0,6 \mathrm{MPa}$
- ciśnienie wypływu (otoczenia) : $\mathrm{p}_{2}=0$

3.2. Obliczeniowa przepustowość zaworu

$\mathrm{G}=1,1 \times \mathrm{Gcw}$
$\mathrm{G}=1,1 \times 1376,0=1514 \mathrm{~kg} / \mathrm{h}$

3.3. Teoretyczna iednostkowa przepustowość zaworu.

$$
\mathrm{qm}=1414,5 \times \overline{\mathrm{V}(0,6-0) \times 983,2}=34355 \mathrm{~kg} / \mathrm{m}^{2} \times \mathrm{s}
$$

3.4. Obliczeniowy przekrój gniazda zaworu.

1514

3.5. Obliczeniowa średnica gniazda zaworu.

$$
\begin{aligned}
& \mathrm{dg}=\mathrm{V} \frac{4 \times 0,000061}{3,14} \\
& \mathrm{dg}=0,0088 \mathrm{~m}=8,8 \mathrm{~mm}
\end{aligned}
$$

3.6. Dobór zaworu.

- przyjęto zawór bezpieczeństwa membranowy typu SYR2115 o
wielkości :
$\mathrm{d} 1 \mathrm{xd} 2=20 \times 25 \mathrm{~mm}$
$\mathrm{dg}=14 \mathrm{~mm}$
$\alpha c=0,20$
$\mathrm{po}=0,6 \mathrm{MPa}$

XX. DOBÓR KOMINA

1. Dane wyiściowe.

- moc cieplna kotła : $\mathrm{Q}_{\mathrm{k}}=160,0 \mathrm{~kW}$
- wysokość komina: $\mathrm{H}_{\mathrm{k}}=8,5 \mathrm{~m}$
- temperatura spalin $55-76^{\circ} \mathrm{C}$

2. Określenie średnicy komina.

- dla mocy cieplnej 160 kW oraz wysokości komina $\mathrm{Hk}=8,5 \mathrm{~m}$ odczytano z diagramu Schiedela średnice wewnętrzna $\mathrm{dk}=250 \mathrm{~mm}$.

3. Dobór komina

- przyjęto komin typu MKKS o średnicy wewnętrznej dk $=250 \mathrm{~mm}$ i wysokości $\mathrm{H}_{\mathrm{k}}=8,5 \mathrm{~m}$.
Szczegóły komina podano na rysunkach.

XXI. DOBÓR ELEMENTÓW WENTYLACYJNYCH

1. Dane wyiściowe.

- moc cieplna kotla: $\mathrm{Qk}=160 \mathrm{~kW}$
- wskaźnik wentylacji nawiewnej : $\mathrm{Wn}=5 \mathrm{~cm} 2 / \mathrm{kW}$
- wskaźnik wentylacji wywiewnej : $\mathrm{Ww}=2,5 \mathrm{~cm} 2 / \mathrm{kW}$

2. Obliczeniowy przekrói kanalu nawiewnego.

$\mathrm{Fn}=\mathrm{Qk} \times \mathrm{Wn}$

$$
\mathrm{Fn}=160 \times 5=800 \mathrm{~cm}^{2}
$$

3. Obliczeniowy przekrói kanalu wywiewnego.

$\mathrm{Fw}=\mathrm{Qk} \times \mathrm{Ww}$
$\mathrm{Fw}=160 \times 2,5=400 \mathrm{~cm}^{2}$

4. Dobór kanalów

- do nawiewu powietrza przyjęto czerpnię ścienną typu A o wym. $400 \times 200 \mathrm{~mm}$ osadzoną w ścianie zewnętrznej na wysokości 30 cm nad posadzką.
- do wywiewu powietrza przyjęto murowany kanał wywiewny wym. 270x140

XXII. ZAPOTRZEBOWANIE PALIWA

1. Dane wyiściowe.

- oblicz. zapotrzebowanie ciepła: $\mathrm{Q}_{\mathrm{co}+\mathrm{ct}}=114,9 \mathrm{~kW}$

$$
\mathrm{Q}_{\mathrm{cw}}=8,7 \mathrm{~kW}
$$

- wartość opałowa gazu ziemnego typu $\mathrm{E}: \mathrm{W}=33400 \mathrm{~kJ} / \mathrm{m} 3$
- średnia sprawność kotłowni : $\eta=0,9$

2. Obliczeniowe zapotrzebowanie gazu.

$$
\begin{aligned}
& B h_{c o}=\frac{Q_{c o}}{--\cdots \times---} \\
& \mathrm{Bh}_{\mathrm{co}}=\frac{114,9 \times 860 \times 4,19}{33400 \times 0,-\cdots}=13,78 \mathrm{~m}^{3} / \mathrm{h} \\
& \mathrm{Bh}_{\mathrm{cw}}=\frac{\mathrm{Q}_{\mathrm{cw}}}{\mathrm{~W} \times----\quad} \\
& \mathrm{Bh}_{\mathrm{cw}}=\frac{8,7 \times 860 \times 4,19}{33400 \times-\cdots-\cdots---------\cdots}=10,04 \mathrm{~m}^{3} / \mathrm{h} \\
& \mathrm{Bh}_{\max }=\mathrm{Bh}_{\mathrm{co}}+\mathrm{Bh}_{\mathrm{cw}} \\
& \mathrm{Bh}_{\text {max }}=13,78+1,04=14,82 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

3. Roczne zapotrzebowanie gazu.

$\mathrm{Br}_{\mathrm{co}}=\frac{\mathrm{Q}_{\mathrm{co}}}{\mathrm{W} \times-\boldsymbol{-} \boldsymbol{\eta}}$
$\mathrm{Br}_{\mathrm{co}}=\frac{545,5 \times 860 \times 4,19 \times 1000}{33400 \times 0,-\cdots \cdots \cdots}=65391 \mathrm{~m}^{3} / \mathrm{rok}$

$$
\mathrm{Br}_{\mathrm{cw}}=\frac{\mathrm{Q}_{\mathrm{cw}}}{\mathrm{~W} \times-\cdots}
$$

$$
\mathrm{Br}=\mathrm{Br}_{\mathrm{co}}+\mathrm{Br}_{\mathrm{cw}}
$$

$$
\mathrm{Br}=65391+9758=75149 \mathrm{~m}^{3} / \mathrm{rok}
$$

mgrinz. Maribsz/Kokcieiny

 wodociogduych, we wor inych gerowich,

Nrewid. Opllogargazacyinych
Nrewidoplosabledosios

SECESPOL - ARKUSZ DOBORU WYMIENNIKÓW

KLIENT :

PROJEKT
NR OBLICZEŃ :
PRZYGOTOWAL:
DATA: 2015-01-23

do projektu technologii kotłowni gazowej dla Budynku Szkoły Podstawowej, Przedszkola oraz Świetlicy Wiejskiej w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.

L.p.	Wyszczególnienie	Jedn.	Ilość
1	2	3	4
	I. Instalacia technologiczna		
1.	Kocioł wodny kondensacyjny firmy BUDERUS typu LOGANO plus GB312 o mocy cieplnej 160 kW z palnikiem modulowanym	kpl	1
2.	Sprzęgło hydrauliczne z separatorem powietrza firmy HUSTY typu SPIROCROSS DN050	kpl	1
3.	Naczynie przeponowe dla co typu REFLEX NG 12/3	szt	1
4.	Pompa obiegu kotła firmy GRUNDFOS typu MAGNA 32-80	szt	1
5.	Pompa obiegowa co nr 1 firmy GRUNDFOS typu ALPHA 2 25-60 130	szt	1
6.	Pompa obiegowa co nr 2 firmy GRUNDFOS typu ALPHA 2 25-60 130	szt	1
7.	Pompa obiegowa ct (obieg pierwotny) firmy GRUNDFOS typu MAGNA 32-60	szt	1
8.	Mieszacz trójdrogowy co nr 1 firmy DANFOSS typu HRB3 $/ \mathrm{dn}=32 \mathrm{~mm}$ z siłownikiem AMB 162	kpl	1
9.	Mieszacz trójdrogowy co nr 2 firmy DANFOSS typu HRB3 $/ \mathrm{dn}=32 \mathrm{~mm}$ z siłownikiem AMB 162	kpl	1
10.	Wymiennik płytowy firmy SECESPOL typu LB 31-130 5/4" o mocy 65 kW	szt	1
11.	Pompa obiegowa ct (obieg wtórny) firmy GRUNDFOS typu MAGNA 32-60 (do pracy z glikolem etylenowym)	szt	1
12.	Podgrzewacz cw pionowy firmy BUDERUS typu LOGALUX SU400/5 o poj. 4001	kpl	1
13.	Pompa obiegowa cw firmy GRUNDFOS typu MAGNA 25-60	szt	1
14.	Pompa cyrkulacyjna cw firmy GRUNDFOS typu ALPHA 2 $25-60 \mathrm{~N}$	szt	1
15.	Naczynie przeponowe dla co typu REFLEX NG50/6	szt	1
16.	Naczynie przeponowe dla ct typu REFLEX S18/10	szt	1
17.	Naczynie przeponowe dla cw typu REFIX DD18	szt	1
18.	Demineralizator firmy INWATER typu IWR25MB o wyd. $0,5 \mathrm{~m}^{3} / \mathrm{h}$	kpl	1
19.	Wodomierz skrzydełkowy typu JS - 0,2-2,5/dn $=20 \mathrm{~mm}$	szt	1
20.	Filtr wstępny firmy EPURO typu EPURION A- 25 2, $\varnothing 25$ mm	szt	1
21.	Zawór napełniania instalacji typu SYR $6827 \mathrm{CA} / \mathrm{dn}=20 \mathrm{~mm}$	szt	1
22.	Zawór bezpieczeństwa typu SYR $1915 / 25 \times 32 \mathrm{~mm} / 0,3 \mathrm{MPa}$	szt	1
23.	Zawór bezpieczeństwa typu SYR 1915 / 20x $32 \mathrm{~mm} / 0,3 \mathrm{MPa}$	szt	1

1	2	3	4
24.	Zawór bezpieczeństwa typu SYR $2115 / 20 \times 25 \mathrm{~mm} / 0,6 \mathrm{MPa}$	szt	1
25.	Czujnik braku wody w kotle typu SYR 933.1	szt	1
26.	Regulator kotłowy LOGAMATIC 4323	szt	1
27.	Moduł do sterowania ciepłą wodą oraz jednym obiegiem grzewczym z mieszaczem typ FM441	szt	1
28.	Moduł do sterowania dwoma obiegami grzewczymi z mieszaczem typu FM442	szt	1
29.	Czujnik temperatury zewnętrznej FA	szt	1
30.	Czujnik temperatury czynnika grzejnego po zmieszaniu FV	szt	2
31.	Czujnik temperatury wody sprzęgła hydraulicznego FK	szt	1
32.	Czujnik temperatury CWU AS.1.6	szt	1
33.	Czopuch dwuścienny typu MKKD ze stali k.o. $\varnothing 160 \mathrm{~mm}$ $\mathrm{l}=0,7 \mathrm{~m}$	kpl	1
34.	Czopuch dwuścienny typu MKKD ze stali k.o. $\varnothing 250 \mathrm{~mm}$ $\mathrm{l}=2,5 \mathrm{~m}$	kpl	1
35.	Komin dwuścienny typu MKKD ze stali k.o. o średnicy wewn. $\varnothing 250, \mathrm{Hk}=8,5 \mathrm{~m}$	kpl	1
36.	Manometr tarczowy do $1,0 \mathrm{MPa}$	szt	21
37.	Termometr tarczowy do $120^{\circ} \mathrm{C}$	szt	13
38.	Odpowietrznik automatyczny mosiężny $\emptyset 15 \mathrm{~mm}$	szt	13
39.	Neutralizator kondensatu typu NE 0.1	kpl	1
40.	Separator powietrza typu SPIROVENT/ $\mathrm{dn}=50 \mathrm{~mm}$	szt	1
41.	Filtr siatkowy typu FS-1/ $\emptyset 25 \mathrm{~mm}$	szt	1
42.	jw. lecz $\emptyset 32 \mathrm{~mm}$	szt	3
43.	jw. lecz $\emptyset 50 \mathrm{~mm}$	szt	3
44.	jw. lecz kohnierzowy $\varnothing 65 \mathrm{~mm}$	szt	1
45.	Zawory zwrotne mufowe $\emptyset 25 \mathrm{~mm}$	szt	4
46.	jw. lecz $\emptyset 32 \mathrm{~mm}$	szt	3
47.	jw. lecz $\emptyset 50 \mathrm{~mm}$	szt	3
48.	jw. lecz kołnierzowy $\emptyset 65 \mathrm{~mm}$	szt	1
49.	Zawory kulowe mufowe $\emptyset 15 \mathrm{~mm}$	szt.	17
50.	jw. lecz $\emptyset 20 \mathrm{~mm}$	szt	4
51.	jw. lecz $\emptyset 25 \mathrm{~mm}$	szt	9
52.	jw. lecz $\emptyset 32 \mathrm{~mm}$	szt	14
53.	jw. lecz $\varnothing 50 \mathrm{~mm}$	szt	11

1	2	3	4
54.	Zawory kulowe kolnierzowe $\emptyset 65 \mathrm{~mm}$	szt	7
55.	Rury stalowe czarne ze szwem $\emptyset 15 \mathrm{~mm}$	mb	3,0
56.	jw. lecz $\emptyset 25 \mathrm{~mm}$	mb	3,0
57.	$j \mathrm{jw}$. lecz $\emptyset 32 \mathrm{~mm}$	mb	11,0
58.	$j w$. lecz $\emptyset 50 \mathrm{~mm}$	mb	2,0
59.	$j w$. lecz $\emptyset 65 \mathrm{~mm}$	mb	16,0
60.	$j w$. lecz $\varnothing 80 \mathrm{~mm}$	mb	4,0
61.	Rury miedziane $\varnothing 15 \mathrm{~mm}$	mb	3,0
62.	jw. lecz $\emptyset 22 \mathrm{~mm}$	mb	5,5
63.	jw. lecz $\varnothing 28 \mathrm{~mm}$	mb	9,0
64.	jw. lecz $\emptyset 35 \mathrm{~mm}$	mb	7,0
65.	$j w .1 \mathrm{lecz} \emptyset 54 \mathrm{~mm}$	mb	13,0
66.	Izolacja ciepłochronna typu STEINONORM 300 dla rur $\varnothing 32 \mathrm{~mm}$	mb	9,0
67.	jw. lecz $\emptyset 65 \mathrm{~mm}$	mb	16,0
68.	jw. lecz $\emptyset 80 \mathrm{~mm}$	mb	4,0
69.	Izolacja ciepłochronna typu THERMAFLEX dla rur $\emptyset 15 \mathrm{~mm}$	mb	3,0
70.	jw. lecz $\emptyset 22 \mathrm{~mm}$	mb	5,5
71.	jw. lecz $\emptyset 28 \mathrm{~mm}$	mb	9,0
72.	jw. lecz $\emptyset 35 \mathrm{~mm}$	mb	7,0
73.	jw. lecz $\emptyset 54 \mathrm{~mm}$	mb	13
74.	Zlew prostokątny emaliowany z syfonem	kpl	1
75.	Gaśnica proszkowa 6 kg	szt	1
76.	Masa plastyczna ognioodporna firmy HILTI typu CP 671 EI 120	kg	5
77.	Zbiornik na glikol o poj. 2001 ze stali nierdzewnej o wym. $100 \times 50 \times 40 \mathrm{~cm}$ zestawem do napełnienia.	kpl	1
	II. Instalacia gazowa		
1.	Rury stalowe czarne bez szwu $\emptyset 32 \mathrm{~mm}$	mb	4,5
2.	jw. lecz $\emptyset 50 \mathrm{~mm}$	mb	7,0
2.	jw. lecz $\emptyset 80 \mathrm{~mm}$	mb	5,5
3.	Kurek gazowy mufowy $\emptyset 32 \mathrm{~mm}$	szt	1
4.	Filtr siatkowy $\emptyset 32 \mathrm{~mm}$	szt	1
5.	Detektor gazu firmy GAZEX typu DEX-12	kpl.	1

1	2	3	4
6.	Moduł alarmowy firmy GAZEX typu MD-4.Z	kpl.	1
7.	Sygnalizator akustyczno-optyczny firmy GAZEX typu SL-21	kpl.	1
8.	Tuleja ochronna stalowa Ø 80 mm o długości 40 cm	szt.	1
9.	Zawor z głowicą odcinającą typu MAG-3 Ø50 mm	kpl	1
10.	Masa uszczelniająca ognioodporna firmy HILTI typu CP601S o odporności ogniowej EI 120	kg	2
11.	Punkt gazowy redukcyjno-pomiarowy firmy EM-GAZ typu PR-25/ARD-G16DE/GX (nr kat. M-51) w szafce gazowej o wym. $820 \times 770 \times 270 \mathrm{~mm}$ wyposażony w: - zawór kulowy sferyczny $\varnothing 15 \mathrm{~mm}$ - manometr $0,6 \mathrm{MPa}$ z kurkiem trójdrogowym $\varnothing 15 \mathrm{~mm}$ - filtr gazu typu FGA-15/K Ø15 mm - reduktor ciśnienia gazu typu ARD 25 - zawór kulowy gwintowany Ø$毋 32 \mathrm{~mm}$ - gazomierz miechowy typu G 16 - rejestrator z transmisją danych - manometr 6 kPaz kurkiem trójdrogowym $\varnothing 15 \mathrm{~mm}$ - zawór kulowy blokowy $\varnothing 50 \mathrm{~mm}$ - zawór z głowicą odcinającą typu MAG-3 $\varnothing 50 \mathrm{~mm}$	kpl.	1

Uwagi: 1. Wpusty, rury kanalizacyjne i zlew ujęto w przedmiarze wewnętrznej instalacji wod-kan i cwu.

2. Punkt redukcyjno - gazowy uwzględnić w przypadku braku takiej pozycji w projekcie przyłącza gazu n.c.

mgr inz. Roman Golansk

13. Zestawienie elementów komina i czopuchów

do projektu technologii kotłowni gazowej dla Budynku Szkoły Podstawowej, Przedszkola oraz świetlicy Wiejskiej w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.

Ozn. na rys.	Nazwa elementu	Symbol	Wymiary w mm	Ilość w szt.
1	2	3	4	5
	Komin typu MKKS $\varnothing 2$			
1	Wyczystka KPKK + OD	KPKK + OD	$\emptyset 250,1=400$	1
2	Prostka ze stabilizatorem	RPKS 1000	$\emptyset 250,1=1000$	1
3	Trójnik 90°	TRK 90	$\emptyset 250,1=450 /<90^{\circ}$	1
4	Prostka ze stabilizatorem	RPKS 1000	$\emptyset 250,1=1000$	6
5	Prostka ze stabilizatorem	RPKS 1000	$\emptyset 250,1=800$	1
6	Parasol	A	$\emptyset 250,1=350$	1
7	Osłona	WBK	ø 250	1
8	Obejma rury + uszczelka	OB	ø 250	10
Czopuch dwuścienny typu MKKD \varnothing 250/160				
9	Złączka	ZもK	$\emptyset 250,1=200$	1
10	Kolano 90°	BGK	$\emptyset 250,<90^{\circ}$	1
11	Prostka	ATK 1000	ø250, $1=920$	1
12	Kolano 93°	BGK	$\emptyset 250,<93{ }^{0}$	1
13	Prostka	ATK 500	$\emptyset 250,1=400$	1
14	Redukcja	RD	ø250/160, 1 = 340	1
15	Kolano 90°	BGK 90	$\varnothing 160,<90^{\circ}$	2
16	Obejma rury + uszczelka	KBTS	Ø160	2
17	Obejma rury + uszczelka	KBTS	$\varnothing 250$	5

OZNACZENIA:

1. Kocioł wodny typu LOGANO plus GB312 o mocy cieplnej 160 kW
2. Naczynie przeponowe typu REFLEX NG $12 / 3$
3. Sprzęgło hydrauliczne z separatorem powietrza SPIROCROSS XC DN050
4. Pompa obiegu kotta typu MAGNA 32-80
5. Pompa obiegowa co nr 1 typu ALPHA 2 25-60 130
6. Pompa obiegowa co nr 2 typu ALPHA $225-60130$
7. Pompa obiegowa ct (obieg pierwotny) typu MAGNA 32-60
8. Mieszacz trójdrogowy nr 1 typu HRB $3 \mathrm{dn}=32 \mathrm{~mm}$
9. Mieszacz trojdrogowy nr 1 typu HRB $3 \mathrm{dn}=32 \mathrm{~mm}$
10. Wymiennik plytowy typu LB 31-130 $5 / 4$ " o mocy $65,0 \mathrm{~kW}$
11. Pompa obiegowa ct (obieg wtórny) typu MAGNA 32-60
12. Podgrzewacz cw pionowy typu Logalux SU400/5 Podgrzewac
o poj. 4001
13. Pompa obiegowa cw typu MAGNA 25-60
14. Pompa cyrkulacyjna cw typu ALPHA2 25-60 N
15. Naczynie przeponowe dla co typu REFLEX NG50/6
16. Naczynie przeponowe dla co typu REFLEX NG50/6
17. Naczynie przeponowe da typu REFEX S18/4
18. Naczynie przeponowe dla cw typu REFIX DD18
19. Reduktor cisnienia typu SYR 31
20. Demineralizator typu IWR 25MB
21. Demineralizator typu lWR 2SMB $202-5 \mathrm{dn}=20 \mathrm{~mm}$
22. Filtr wstępny typu EPURION - A-25-2
23. Zawór bezpieczenstwa typu SYR $1915 / 25 \times 32 \mathrm{~mm} / 0,3 \mathrm{MPa}$ 23. Zawór bezpieczeństwa typu SYR $1915 / 20 \times 25 \mathrm{~mm} / 0,3 \mathrm{MPa}$ 24. Zawór bezpieczenstwa typu SYR $2115 / 20 \times 25 \mathrm{~mm} / 0,6 \mathrm{MPa}$ 5. Czujnik braku wody w kotle typu SYR 933.1
24. Regulator Logamatic $4323+$ FM441 + FM442
25. Czujnik temperatury zewnętrznej FA
26. Czujnik temperatury czynnika grzejnego po zmieszaniu FV
27. Czuinik temperatury CWU AS16
28. Czujnik temperatury CWU AS1.6
29. Czopuch typu MKKD ze stali k.o. $/ \varnothing 160 \mathrm{~mm}, \mathrm{I}=0,7 \mathrm{~m}$ 32. Czopuch typu MKKD ze stali k.o. $/ \varnothing 250 \mathrm{~mm}, I=2,5 \mathrm{~m}$ 33. Komin typu MKKS ze stali k.o. $\varnothing 250 \mathrm{~mm}, \mathrm{Hk}=8,5 \mathrm{~m}$ 34. Czerpnia ścienna typu A o wym. $400 \times 200 \mathrm{~mm}$
30. Szafka gazowa redukcyino - pomiarowa
31. Układ do napełania inst. ct glikolem ze zb. o poj. 200
32. Zawór napetniania instalacji typu SYR 6827CA/dn $=20 \mathrm{~mm}$

Uwaga: Przejścia przewodów przez ściany kotlowni prowadzić w rurach oslonowych stalowych i zabezpieczyć
p.poz.masq plastycznq ognioodpornq typu CP 671 EI 120

OZNACZENIA:
. Kocioł wodny typu LOGANO plus GB312 o mocy cieplnej 160 kW . Detektor gazu typu DEX-12
. Modur alarmowy typu MD-4.Z
4. Zawór z głowicą samozamykajacą typu MAG-3 Ø50mm
. Sygnalizator akustyczno optyczny typu SL-31
. Rozdzielnica elektryczna

Uwaga: Przejścia przewodów przez ściany kotłowni prowadzic w rurach oslonowych stalowych i zabezpieczyc
p.poż.masa plastyczna ognioodporna typu CP 671 EI 120

PRZEDSIEBIORSTWO PROJEKTOWO-WYKONAWCZE "deem" Anna Dziuba-Jaglinska Wiktorów 50, 98-350 Biała			Projektant:	mer iṅ̇ Roman Golariski spec. instalocje sanitame	8	OPL/O605/PCOOS/10 OPL/IS/0093/10
					k	
			Sprawdzit:	mer iṅ̇. Mariusz Kościelny spec. instalacje sanitame		OPL/D546/POOS/O9 OXL/IS/0007/10
czescs:	$\begin{aligned} & \text { skala: } \\ & \text { 1:50 } \end{aligned}$	 ciggami piesco-jednymi i miejsami pososjonymi				
			05-506 Lesznowola			nr rysunku:
tom:	format:	Zamawiajacy:		dz.nr.ew. 300, 112/10 Zgorzata Gmina Lesznowola 05-506;		S-6
			l. Gminnej Rady Narodowej 60 Technologia kotlowni gazowej - Instalacja ASBiG			$\begin{gathered} \text { data: } \\ 01.2015 r . \end{gathered}$

