PRZEDSIĘBIORSTWO PROJEKTOWO - WYKONAWCZE deem Anna Dziuba-Jaglińska,
98-350 Biała, Wiktorów 50 [filia: ul.Złoczewska 30B, 98-360 Lututów] tel. 609979 255, 607929 255, fax(043)84 19 255, biurodziuba@wp.pl NIP 832-193-69-91 REGON 731657889

PROJEKT WYKONAWCZY

ZMIANA POZWOLENIA NA BUDOWE NR 113LR/10 Z DNIA 01.04.2010R W ZAKRESIE ZMIANY FUNKCJI BUDYNKU I ZAGOSPOD.TERENU ŚWIETLICY WIEJSKIEJ NA BUDYNEK SZKOŁY PODSTAWOWEJ, PRZEDSZKOLA ORAZ ŚWIETLICY WIEJSKIEJ

Z NIEZBEDNYMI INSTALACJAMI, 2-ma ZJAZDAMI Z DROGI GMINNEJ, CIĄGAMI PIESZO-JEZDNYMI I MIEJSCAMI POSTOJOWYMI

WEWNĘTRZNA INSTALACJA CO i CT

Lokalizacja:	Zgorzała dz nr ewid. 300, 112/10 05-506 Zgorzała
Inwestor:	Gmina Lesznowola, 05-506 Ul.Gminnej Rady Narodowej 60

Projektant	mgr inż.Roman Golański spec.instal.i urz.sanitar. Upr nr OPL/0605/POOS/10 OPL/IS/0093/10	
Sprawdzający	mgr inż.Mariusz Kościelny spec.instal.i urz.sanitar. Upr nr OPL/0546/POOS/09 OPL/IS/0007/10	mgr inż. Mariwsz) ko sf flelny Uprawnienia budowiane do proietioy an la fez ograniczeŕ w specialnosci instalay vine iv aghes si sieci, instutacii i urzadzen ciepinych, yentyluc ing ch, gazowych. wodociagdwys finend facyinych Nrewid.OPLIO546/POOS/09

Lututów styczeń 2015r.

WEWNETRZNA INSTALACJA CO i CT

Zawartość opracowania

1. Przedmiot opracowania
2. Podstawa opracowania
3. Dane ogólne
4. Koncepcja zaopatrzenia obiektu w ciepło
5. Zakres opracowania
6. Rozwiązanie techniczne instalacji co
7. Rozwiązanie techniczne instalacji ct
8. Izolacje termiczne
9. Przejście przez przegrody p.poż.
10. Wymagania dla podpór i zawiesi
11. Wymagania i zalecenia
12. Wytyczne branżowe
13. Uwagi końcowe
14. Obliczenia
15. Przedmiar robót
16. Rysunki

S 1 - Rzut przyziemia
S 2 - Rzut piętra
S 3 - Rzut poddasza
S 4-Rozwinięcie instalacji co
S 5 - Rozwinięcie instalacji ct

1. PRZEDMIOT OPRACOWANIA

Przedmiotem niniejszego opracowania jest projekt zamienny wewn. instalacji co ict dla Budynku Szkoły Podstawowej, Przedszkola oraz Świetlicy Wiejskiej w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.

2. PODSTAWA OPRACOWANIA

Podstawą niniejszego opracowania są:

1. Zlecenie Inwestora
2. Założenia projektowe uzgodnione z Inwestorem
3. Projekt architektoniczno - konstrukcyjny p.n. „ Projekt budowlany zmiana pozwolenia na budowę nr 113LR/10 z dnia 01.04.2010r. w zakresie zmiany funkcji budynku i zagospodarowania terenu Świetlicy Wiejskiej na budynek Szkoły Podstawowej, Przedszkola, oraz Świetlicy Wiejskiej z niezbędnymi instalacjami, zjazdem z drogi gminnej, ciągami pieszo - jezdnymi i miejscami postojowymi" w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.
4. „Wytyczne projektowania instalacji CO „-COBRTI „Instal", W-wa 1994 r.
5. „Wewnętrzne instalacje wodociągowe i grzewcze z rur miedzianych wytyczne stosowania i projektowania „-COBRTI „Instal „, W-wa 1994 r.
6. „Wytyczne stosowania grzejników firmy RETTIG HEATIG „-R.H. Sp. zo.o., W-wa
7. Rozp. Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz. Ustaw nr 75 z dn. 15.06.2002 r.)
8. „PN - B - 03406 - Obliczanie zapotrzebowania na ciepło pomieszczeń kubaturze do $600 \mathrm{~m}^{3 \prime}$.
9. Obowiązujące przepisy, normy, katalogi .

3. DANE OGÓLNE

Projektowany budynek Szkoły Podstawowej, Przedszkola oraz Świetlicy
Wiejskiej wolnostojący dwukondygnacyjny, niepodpiwniczony, z poddaszem częściowo użytkowym
Konstrukcja budynku Świetlicy tradycyjna - ściany zewnętrzne z cegły ceramicznej grub. 30 cm ocieplone warstwą styropianu grub. 15 cm , stropy
żelbetowe zespolone, nad piętrem ocieplony warstwą wełny mineralnej grub. 16 cm , dach kryty blachą dachówkową powlekaną.

Posadzki z terakoty i wykładziny obiektowej na podłożu betonowym ocieplonym warstwą styropianu grub. 5 cm .

Program użytkowy projektowanego obiektu:
przyziemie:
0,01 winda
0,02 kl.schodowa
0,03 wiatrołap
0,04 komunikacja
0,05 przedsionek
0,06 catering
0,07 wc cateringu
0,08 zmywalnia
0,09 jadalnia
0,10 sala/klasa 0
0,11 magazyn
0,12 wc dzieci
0,13 szatnia
0,14 wc dziewczynek
0,15 wc chłopców
0,16 wc personelu
0,17 wc niepełnospraw. pł.gres
0,18 pom.porządkowe
0,19 hydroforownia
0,20 wiatrołap+szatnia
0,21 kl.schodowa
0,22 przedsionek
0,23 wc.catering
0,24 catering
0.25 magazyn
0.26 komunikacja
0.27 wc mężczyzn
0.28 wc kobiet i NPS
0.29 zmywalnia
pietro:
1.1 pom.porz.+magazyn
1.2 p.socjalne
1.3 prac. komputerowa
1.4 sala/klasa III
1.5 p.nauczycielski
1.6 p.logopedy
1.7 p.administracji
1.8 p.administracji 2
1.9 pracownia 1
1.10 sala/klasa II
1.11 wc dziewczynek kl.l
1.12 wc chłopców kl.I
1.13 sala/klasa I
1.14 kotłownia
1.16 wc chłopców
1.17 wc niepełnospraw.
1.18 wc personelu
1.19 komunikacja
poddasze:
2.01 wentylatorownia

W/w obiekt wyposażony zostanie w instalacje:

- wod - kan i cwu
- co ict
- wentylacji mechanicznej
- instalację gazowa
- elektryczną.

4. KONCEPCJA ZAOPATRZENIA OBIEKTU W CIEPLO

Zgodnie z założeniami Inwestora przyjęto koncepcję zaopatrzenia w ciepło projektowanego obiektu z własnej kotłowni gazowej, wbudowanej.
Dla projektowanego obiektu przyjmuje się cztery oddzielne obiegi grzewcze :

- dwa obiegi co
- obieg ciepła technologicznego
- obieg przygotowania cwu

5. ZAKRES OPRACOWANIA

W zakres niniejszego opracowania wchodzą:

1. Wewnętrzna instalacja co
2. Wewnętrzna instalacji ct.
3. ROZWIAZANIE TECHNICZNE WEWN. INSTALACJI CO

6.1. System ogrzewania

Zaprojektowano ogrzewanie wodne niskotemperaturowe o obliczeniowych temperaturach czynnika grzejnego $70 / 50^{\circ} \mathrm{C}$ z obiegiem wymuszonym w układzie zamkniętym.
Przyjęto dwa obieg grzewcze, oddzielnie dla parteru i piętra.

6.2. Opis instalacii

Zaprojektowano wewn. instalację CO dwururową z rozdziałem dolnym w układzie poziomym z grzejnikami stalowymi płytowymi
Poziomy zaprojektowano w warstwie izolacji posadzki oraz pod stropem piętra.

Poziomy i piony z rur miedzianych łączonych na lut twardy.
Grzejniki stalowe płytowe z dolnym podłączeniem typu PURMO COMPACT jedno, dwupłytowe o wysokości 600 mm .
Odpowietrzenie instalacji zaprojektowano jako indywidualne za pomocą odpowietrzników grzejnikowych oraz automatycznych w najwyższych punktach instalacji.

Przykrycie bruzd pionowych płytą gipsową grub. $12,5 \mathrm{~mm}$.
Mocowanie grzejników przy pomocy wsporników ściennych.

Na zasilaniu grzejników zaprojektowano głowice termostatyczne firmy DANFOSS RA-N-P (w wykonaniu szkolnym) z podwójną regulacją wstępną i eksploatacyjną.

Na podejściach grzejnikowych zaprojektowano zawory przyłączeniowe zespolone firmy DANFOSS typu RLV-K / $\varnothing 15 \mathrm{~mm}$.

W wyniku zmian obciążeń cieplnych w poszczególnych pomieszczeniach (zyski ciepła od nasłonecznienia, ludzi, oświetlenia, urządzeń itp.) dla utrzymania stałej temperatury wewnętrznej następuje automatycznie zmiana wielkości strumienia czynnika grzejnego przepływającego przez grzejnik. Po zakończeniu montażu instalację należy przepłukać oraz wykonać próby szczelności.

Próbę na zimno wykonać na ciśnienie $0,6 \mathrm{MPa}$, a na gorąco przeprowadzić w ciągu 72 godzin przy obliczeniowych temperaturach czynnika grzejnego.

Poziomy i piony należy zaizolować termicznie otuliną typu THERMAFLEX z powłoką przeciwwilgociową.
W celu skompensowania wydłużeń cieplnych przewodów miedzianych należy wykonać na poziomach dla odcinków dłuższych niż 10 m kompensatory U kształtowe prefabrykowane lub za pomocą kolan o ramieniu długości 30 cm . Dalsze szczegóły podano na rysunkach.

7. ROZWIAZANIE TECHNICZNE INSTALACJI CT

Zaprojektowano odrębną instalację zasilenia nagrzewnic wentylacyjnych. W budynku zaprojektowano instalację zasilenia central wentylacyjnych.

Centrala wentylacyjna nawiewno - wywiewna dla części szkolnej
typu VS $40-R^{*}$ PH/SS z węzłem regulacyjno -pompowym złożonym z :

- pompy obiegowej
- zaworu mieszającego trójdrogowego,
- zaworu regulacyjnego z nastawą wstępna typu $A B-Q M$,

$$
\mathrm{dn}=32 \mathrm{~mm}
$$

- filtra siatkowego typu FS-1
- armatury odcinającej i pomiarowej.

Centrala wentylacyjna nawiewno - wywiewna dla pom. Świetlicy Wiejskiej typu VS $30-\mathrm{R}$ - PH/SSz węzłem regulacyjno -pompowym złożonym z:

- pompy obiegowej
- zaworu mieszającego trójdrogowego,
- zaworu regulacyjnego z nastawą wstępna typu AB-QM $\mathrm{dn}=32 \mathrm{~mm}$
- filtra siatkowego typu FS-1
- armatury odcinającej i pomiarowej.

Pozostałe elementy regulacyjne m.i. regulatory i czujniki temperatury stanowią integralną część central wentylacyjnych.
Zaprojektowano dwustopniowy obieg czynnika grzejnego w układzie kotłownianagrzewnica powietrza central wentylacyjnych.
I stopień stanowi obieg pompowy rozdzielczy czynnika grzejnego w układzie węzeł pompa rozdzielcza - obejścia nagrzewnic wentylacyjnych .
II stopień stanowi obieg pompowo - mieszający w układzie zawór mieszający - pompa obiegowa - nagrzewnica wentylacyjna.

Pompa I stopnia pracuje w sposób ciągły ze stałą temperaturą czynnika grzejnego.
Pompy II stopnia pracują w układzie automatycznej regulacji central wentylacyjnych mającej za zadanie utrzymanie wymaganej temperatury powietrza nawiewanego wg krzywej ogrzewania w sezonie grzewczym.
Ponadto centrale wyposażone są w automatyczne zabezpieczenie nagrzewnic przed zamarzaniem

Instalację zasilającą nagrzewnice zaprojektowano z rur miedzianych łączonych na lut.
Przewody poziome prowadzone są w warstwie izolacji posadzki poddasza.
Próby, płukanie i izolację ciepłochronną wykonać analogicznie jak dla instalacji co.

8. IZOLACJE TERMICZNE

Całość instalacji CO i CT musi być izolowana termicznie. Wszystkie rurociągi należy zaizolować termicznie izolacją odporną na temperaturę $100^{\circ} \mathrm{C}$ i współczynniku przewodności cieplnej $\lambda=0,035 \mathrm{~W} / \mathrm{mK}$. Grubość izolacji wg poniższej tabelki:

| Rodzaj przewodu lub komponentu | Minimalna grubośćć
 izolacji ciepinej
 (materiał $0,035 \mathrm{~W} /(\mathrm{m}$ |
| :--- | :---: | :---: |

	Średnica wewnętrzna do 22 mm	K)
	Średnica wewnętrzna od 22 do 35 mm	30 mm
	Średnica wewnętrzna od 35 do 100 mm	równa średnicy wewnętrznej rury
	Średnica wewnętrzna ponad 100 mm	100 mm
	Przewody i armatura wg poz. 1-4 przechodzące przez ściany lub stropy, skrzyżowania przewodów	50% wymagań z poz. 1-4
Przewody ogrzewań centralnych, przewody wody ciepłej i cyrkulacji instalacji ciepłej wody użytkowej wg poz. 1 -4, ułożone w komponentach budowlanych między ogrzewanymi pomieszczeniami różnych użytkowników	50% wymagań z poz. 1-4	
	Przewody wg poz. 6 ułożone w podłodze	6 mm
	Przewody ogrzewania powietrznego (ułożone w części ogrzewanej budynku)	40 mm
Przewody ogrzewania powietrznego (ułożone w części nieogrzewanej budynku)	80 mm	
Przewody instalacji wody lodowej prowadzone wewnątrz budynku 2)	50% wymagań z poz. 1-4	

Uwaga:

1) przy zastosowaniu materiału izolacyjnego o innym współczynniku przenikania ciepła niz podano w tabeli należy odpowiednio skorygować grubość warstwy izolacyjnej,
${ }^{2)} \quad$ izolacja cieplna wykonana jako powietrznoszczelna.
Preferowana izolacja prefabrykowana ze spienionej pianki polietylenowej w płaszczu ochronnym z foli np. FRZ firmy THERMAFLEX - dla średnic poniżej DN32 oraz izolacja z prefabrykowanej wełny mineralnej w płaszczu ochronnym z foli aluminiowej dla średnic pozostałych.
Rurociagi rozprowadzone podposadzkowo izolować otuliną prefabrykowaną np. typu Thermacompact S o gr. 6 mm .

9. PRZEJŚCIA PRZEZ PRZEGRODY P.POŻ

1. Wszystkie przejścia rurociągów w miejscu przejścia przez elementy oddzielenia przeciwpożarowego należy zabezpieczyć do odporności ogniowej przegrody.
2. Zamocowania przewodów do elementów budowlanych wykonać z materiałów niepalnych, zapewniających przejęcie siły powstającej w przypadku pożaru w czasie nie krótszym niż wymagany dla klasy odporności ogniowej przewodu.
3. Przy przejściu przez przegrody oddzielenia pożarowego rurami stalowymi należy uszczelnić ogniochronną masą uszczelniającą elastyczną np. CP 601S firmy HILTI.
4. W przypadku poprowadzenia rur palnych poprzez przegrode oddzielenia pożarowego należy zabezpieczyć je obejmami p.poż. np. firmy HILTI typu CP 648 montowanymi z każdej strony ściany oddzielenia p.poż.
5. Dla rur palnych o mniejszej średnicy niż 32 mm , należy stosować ogniochronną pęczniejącą masę uszczelniającą np. CP 611A firmy HILTI o klasie odporności ogniowej El 120. Masę tę można łączyć z zaprawą ogniochronną np. CP636 o EI 120.
6. W przypadku prowadzenia rur z np. PCW, PP, PE o średnicach zewnętrznych od 32 do 200 mm i grubościach ścianek od 1,8 do $11,8 \mathrm{~mm}$ można stosować również kasety ogniochronne PROMASTOP®-I służące do uszczelniania przejść instalacyjnych rur z tworzyw sztucznych w ścianach i stropach wykonanych z cegły pełnej, dziurawki, z betonu $z w y k ł e g o ~ l u b ~ z ~$ gazobetonu o grubości nie mniejszej niż 10 cm w przypadku ścian oraz 15 cm w przypadku stropów. Przejścia instalacyjne rur z tworzyw sztucznych uszczelnione kasetami ogniochronnymi PROMASTOP®-I spelniaja wymagania klasy odporności ogniowej El 120. Oznacza to, że szczelność i izolacyjność ogniowa przejścia nie jest mniejsza niż 120 minut. W przypadku przejść w stropach i ścianach o wymaganej gazo- i dymoszczelności przestrzeń między rurami a ścianami otworu powinna być przed założeniem kaset dokładnie wypełniona zaprawą cementowa.
Zabezpieczenia te należy stosować w przypadku występowania przejść przez przegrody oddzielenia pożarowego.

10. WYMAGANIA DLA PODPÓR I ZAWIESI

10.1 Wymagania ogólne.

Wszystkie podparcia rur powinny spełniać wymagania niniejszych warunków technicznych.

Rurociągi mają być prawidłowo podparte, zakotwiczone i prowadzone dla uniknięcia niepotrzebnego ugięcia, nadmiernych drgań oraz aby chronić zarówno rury jak połączone z nimi urządzenia od nadmiernych obciążeń i naprężeń dylatacyjnych.

Wytrzymałość podpory ustala się w oparciu o ciężar rury, ciężą przenoszonego w niej czynnika lub medium użytego do prób, w oparciu o większą wartość, ciężar izolacji, gdy takowa występuje, plus wszystkie występujące siły od wydłużeń cieplnych.
Rurociągi należy podpierać stosując, gdzie to jest możliwe, kombinacje podpór o wspólnej wysokości. Nie izolowane rurociągi ze stali węglowej mogą być opierane bezpośrednio na elementach podporowych.

Należy unikać opierania jednego ciągu rur na drugim. Podpory podlegają zatwierdzeniu przez projektanta instalacji i inspektora nadzoru.

10.2 Materiał.

Wszystkie podpory i wieszaki dla rur o temperaturze do $350^{\circ} \mathrm{C}$ należy wykonać ze stali węglowej gatunków handlowych o granicy plastyczności minimum $85 \mathrm{~N} / \mathrm{m} 2$ przy $350^{\circ} \mathrm{C}$. Części podpory lub wieszaka spawane bezpośrednio do rur ze stali stopowej, nierdzewnej lub z metali nieżelaznych powinny być zrobione z tego samego materiału co sam rurociąg. Wykonawca dostarcza materiał do wykonania i zainstalowania wszystkich podparć rur.
Wszystkie śruby „U" oraz śruby i nakrętki do podpór rurociągów powinny mieć pokrycie galwaniczne, zgodne z PN.

10.3 Wykonawstwo.

Podparcia rur mają być wykonane zgodnie z warunkami technicznymi i PN. Prefabrykowane podpory rurowe powinny mieć właściwe etykietki z numerem podpory.
Przed wykonaniem należy sprawdzić na miejscu i jeżeli to niezbędne poprawić wymiary podpór.
Wszystkie spawania, jeżeli nie podano inaczej, należy wykonać elektrycznie spoiną 5 mm .
Spawanie stali stopowych mają wykonywać wykwalifikowani spawacze.
Wszystkie gwinty powinny być metryczne, chyba że wskazano inaczej.

10.4 Wykończenia.

Po spawaniu wszystkie spoiny należy oczyścić szczotką stalową i śrutować dla usunięcia szlaki i rozprysków po spawaniu.

Podparcia wykonane ze stali węglowej należy przygotować, zagruntować i pomalować jak następuje.
Małe elementy oczyścić ręcznie, z jedną warstwą gruntu i jedną warstwą zewnętrzną wykańczającą.

W razie konieczności ponownego spawania - usunąć farbę.
Po spawaniu powierzchnie pomalować ponownie tym samym kolorem/farbą co istniejąca.

10.5 Uwagi montażowe.

Powierzchnie oparcia stalowych podpór ślizgowych należy oczyścić szczotką i przez śrutowanie, a przy zakładaniu posmarować obficie smarem grafitowym.

Podpory typu „but" spawa się do rury po ostatecznym ustawieniu jej odległości i wysokości.
Tam gdzie to możliwe, należy unikać spawania butów do elementów podparcia, należy preferować połączenia skręcane śrubami.
Materiały jak drewno i liny mogą być używane jako tymczasowe podparcia, w czasie montażu.
10.6 Rozstaw zawiesi i podpór.

Odległości między podporami instalacji rurowych powinny wynosić: $1,5 \mathrm{~m}$ - dla średnic $15 \div 20 \mathrm{~mm}, 2,0 \mathrm{~m}$ - dla średnic $25 \div 32 \mathrm{~mm}, 2,5 \mathrm{~m}$ - dla średnic $40 \div$ 50 mm .
Odległości między podporami instalacji kanałowych (wentylacyjnych) powinny wynosić nie więcej niż 150 mm od każdego kołnierza, pomiędzy kolejnymi podporami nie więcej niż 2 m .

11. WYMAGANIA I ZALECENIA

Wymagania BHP

Podczas montażu i eksploatacji instalacji należy zwracać bezwzględnie uwagę na przestrzeganie przepisów BHP dotyczących montażu instalacji na wysokości oraz pracy urządzeniach pod napięciem elektrycznym.

Wymagania higieniczno - sanitarne
Projektowana instalacja spełnia warunki wymagane przez obowiązujące przepisy sanitarne. Pomieszczenia techniczne nie są przeznaczone na stały pobyt ludzi.
Wymagania w zakresie montażu rozruchu, odbioru instalacji i eksploatacii

Montaż i odbiór instalacji należy wykonać zgodnie z dokumentacją techniczną i DTR urządzeń i zastosowanych materiałów. Rozruch kompleksowy powinien nastąpić po zakończeniu montażu instalacji w budynku. Do odbioru technicznego należy przystąpić po wykonaniu instalacji i zgłoszeniu gotowości do odbioru. Odbiór obejmuje sprawdzenie kompletności wyposażenia i prawidłowości działania instalacji. Sprawdzenie działania obejmuje po wielogodzinnej pracy próbnej z zasady następujące czynności:
-sprawdzenie wartości temp. i ciśnienia w instalacjach wodnych i wentylacyjnych, ich zgodności z projektem, wymaganiami zastosowanych materiałów i urządzeń

- porównanie wartości zmierzonych z danymi wyszczególnionymi w zamówieniu urządzeń kontrolę działania urządzeń regulacyjny
- sprawdzenie wartości zadziałania wszelkich urządzeń zabezpieczających i pomiarowych oraz ich poprawnego montażu
- sprawdzenie prawidłowości rozmieszczenia urządzeń napełniających i spustowych z uwagi na ich łatwy dostęp.

Wymagania w zakresie użytkowania instalacii

Warunkiem prawidłowej pracy instalacji i spełnienia wymagań stawianych w projekcie jest właściwa jej eksploatacja. Urządzenia są przystosowane do pracy automatycznej w ograniczonym zakresie, zatem niezbędny jest fachowy nadzór nad instalacjami podczas eksploatacji. Do utrzymania gotowości eksploatacyjnej instalacje i muszą być poddawane regularnej konserwacji. Obsługa i konserwacja powinny wykonywane przez personel z odpowiednimi kwalifikacjami zawodowymi zgodnie z obsługi użytkownika oraz dokumentacjami urządzeń i użytych materiałów.
Należy zwrócić uwagę na następujące punkty:

- szczelność połączeń rurociągów i urządzeń,
- kontrolę pracy urządzeń w tym wszelkich zabezpieczeń,
- kontrolę temperatur i ciśnienia mediów z uwagi na dopuszczalne parametry wytrzymałościowe wbudowanych materiałów i urządzeń,
- sprawdzenie prowadzenia książki obsługi.

Wszelkie niezgodności należy bezwzględnie zgłaszać odpowiednim służbom nadzoru zakładowego.

Próba szczelności.

Próby szczelności wykonać zgodnie z Warunkami technicznymi wykonania i odbioru robót budowlano montażowych tom II Instalacje sanitarne i przemysłowe rozdział 6.
Wykonawca podejmie wszelkie środki dla zapewnienia, że próby zostaną wykonane w sposób zgodny z przepisami bezpieczeństwa.

12. WYTYCZNE BRANŻOWE

12.1. Budowlano-konstrukcyjne

- wykonać otwory w dachu, stropie i ścianach do prowadzenia instalacji, następnie otwory te zabezpieczyć przed wpływem czynników atmosferycznych
- zapewnić dojście serwisowe do wszystkich elementów instalacji sanitarnych, wymagających okresowej regulacji, przeglądu itp.;
- przejścia pod fundamentami wykonać w tulejach osłonowych.

12.2. Elektryczne

- wykonać zasilania elektryczne do wszystkich zaprojektowanych urządzeń,
- wykonać instalację uziemiającą instalacji co i ct

13. UWAGI KOŃCOWE

1. Projekt kotłowni gazowej stanowi odrębne opracowanie projektowe.
2. Dopuszcza się zamianę projektowanych urządzeń na jakościowo równoważne w zakresie parametrów, konstrukcji i materiału.
3. Do projektu załączono przedmiar robót

mgrinz. Rrmpmplanst
W specidnosio instaryin whahele sieci, instlacii
i uradzen deploych, whondidych, gazowy
,
wotodagowy ix mey ayiny
Hewid. OPappost COS/10
Mariusz kbsce
nienio budowione do protekn hario bezogronica
lurgdzen chaphych, domydachych gazowich.
wodociggowys ikandizacyinych
vid.OPL
,

14. OBLICZENIA

do projektu zamiennego wewnętrznej instalacji co i ct dla Budynku Szkoły Podstawowej, Przedszkola oraz Świetlicy Wiejskiej w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.

Spis treści:

1. Zapotrzebowanie ciepła na cele ogrzewania
2. Dobór grzejników
3. Obliczenie hydrauliczne instalacji co ict

1. ZAPOTRZEBOWANIE CIEPŁA NA CELE OGRZEWANIA

Obliczeniowe zapotrzebowanie ciepła : Qco = 51,9 kW
Qct $=63,0 \mathrm{~kW}$
Kubatura ogrzewana budynku: $3902 \mathrm{~m}^{3}$
Oblicz. zapotrzebowanie ciepła na $1 \mathrm{~m}^{3}$ kubatury ogrzewanej: 29,4 W/m ${ }^{3}$

1. Założenia do obliczeń

Rodzaj budynku: masywny
Rodzaj ogrzewania: wodne pompowe
Oblicz. temp. wody co: $70 / 50^{\circ} \mathrm{C}$
Strefa klimatyczna: III

2. Przyjęta technika obliczeñ

Obliczenia wykonano przy pomocy programu komputerowego „AUDYTOR OZC 6,.5".

2. DOBÓR GRZEJNIKÓW

Na podstawie obliczonego obciążenia cieplnego budynku, temperatur pomieszczeń i parametrów czynnika grzejnego dobrano przy pomocy programu komputerowego „.AUDYTOR CO 3.8" firmy SANKOM , grzejniki stalowe płytowe firmy PURMO odmiany COMPACT C o wysokości 600 mm jedno i dwurzędowe, a ich wielkości podano na rysunkach i w zestawieniu materiałów.

3. OBLICZENIE HYDRAULICZNE INSTALACJI

Opór instalacji coj ct $Z_{\text {z }}$ zaworami termostatycznymi wynosi: $h_{\text {co1 }}=1,30 \mathrm{msw}$

myrim. Bqn/f gomank	$h_{\mathrm{CO} 2}=1,06 \mathrm{msw}$
	mgrinż, Marinsz/Roscielny $\mathrm{h}_{\mathrm{Ct}}=2,99 \mathrm{msw}$
	Uprawnienite budowiane doprof ¢ \% worlio bezogranizzen
aded ciephych, y	
	i urzadzen cigolnych, weoflocenveh, gozowith
	wodoctgodwych menofzocyinych
	Nr ewid.Ofto 0 \$6/poos/09

Wyniki - Ogólne

Wyniki - Ogólne

Powietrze usuwane mech. $\mathrm{V}_{\text {ex }}$:		$\mathrm{m}^{3} / \mathrm{h}$
Średnia liczba wymian powietrza n :	0,5	
Dopływajace powietrze wentylacyjne V_{v} :	2116,5	$\mathrm{m}^{3} / \mathrm{h}$
Średnia temperatura dopływajacego powietrza θ_{v} :	-20,0	${ }^{\circ} \mathrm{C}$
Parametry obliczeń projektu:		
Obliczanie przenikania ciepla przy min. $\Delta \theta_{\text {min }}$:	4,0	K
Wariant obliczeń strat ciepła do pomieszczeńn w sasiednich grupach:		
Obliczaj z ograniczeniem do $\boldsymbol{\theta}_{\mathrm{j}, \mathrm{u}}$		
Minimalna temperatura dyżurna $\boldsymbol{\theta}_{\mathrm{f}, \mathrm{u}}$:	16	${ }^{\circ} \mathrm{C}$
Obliczaj straty do pomieszczeń w sasiednich		
budynkach tak jak by były nieogrzewane:	Tak	
Domyślne dane do obliczeń:		
Typ budynku:	Szkolny	
Typ konstrukcji budynku:	Bardzo ciéżka	
Typ systemu ogrzewania w budynku:	Konwekcyjne	
Osłabienie ogrzewania:	Bez osłabienia	
Regulacja dostawy ciepła w grupach:	Indywidualna reg.	
Stopień szczelności obudowy budynku:	Średni	
Krotność wymiany powietrza wewn. n_{50} :	3,5	1/h
Klasa osłoniecia budynku:	Brak osłoniecia	
Domyślne dane dotyczace wentylacji:		
System wentylacji: Naturalna		
Temperatura powietrza nawiewanego $\theta_{\text {su }}$:		${ }^{\circ} \mathrm{C}$
Temperatura powietrza kompensacyjnego θ_{c} :	20,0	${ }^{\circ} \mathrm{C}$
Domyślne dane dotyczace rekuperacji i recyrkulacji:		
Temperatura dopływajacego powietrza $\theta_{\text {ex, rec }}$:	20,0	${ }^{\circ} \mathrm{C}$
Projektowa sprawność rekuperacji $\eta_{\text {recup }}$:	70,0	\%
Sezonowa sprawność rekuperacji $\eta_{E, \text { recup }}$:	49,0	$\%$
Projektowy stopień recyrkulacji $\eta_{\text {recir }}$:		\%
Sezonowy stopień recyrkulacji $\eta_{\mathrm{E}, \text { recir }}$:		\%
Geometria budynku:		
Rzẹdna poziomu terenu:	114,55	m
Domyślna rzedna podłogi L_{f} :		m
Rzedna wody gruntowej:	112,00	m
Domyślna wysokość kondygnacji H:		m
Domyślna wys. pomieszczeń w świetle stropów H_{i} :		m
Pole powierzchni podłogi na gruncie A_{g} :	526,80	m^{2}
Obwód podłogi na gruncie w świetle ścian zewn. P_{g} :	106,40	m
Obrót budynku:	Bez obrotu	

Statystyka budynku:

Liczba kondygnacji:	3	
Liczba stref budynku:		
Liczba grup pomieszczeń:	4	
Liczba pomieszczen:	50	

15. Przedmiar robót

na wykonanie wewnętrznej instalacji co i ct dla Budynku Szkoły Podstawowej, Przedszkola oraz Świetlicy Wiejskiej w m. Zgorzała (dz. nr ewid. 300) gmina Lesznowola.

1	2	3	4	5
	CV22/60/1,1	szt	6	
	CV22/60/1,2	szt	6	
	CV22/60/1,4	szt	4	
	CV22/60/1,6	szt	2	39
9.	Zawór termostatyczny z głowica typu RA-N Ø15mm	szt	64	
10.	Zawory przyłączeniowy kątowy typu RLV-KS $\varnothing 15 \mathrm{~mm}$	szt	64	
11.	Zawór kulowy mufowy $\varnothing 15 \mathrm{~mm}$	szt	29	
12.	jw. lecz Ø 00 mm	szt	2	
13.	jw. lecz Ø 25 mm	szt	2	
14.	jw. lecz Ø 32 mm	szt	5	
15.	jw. lecz $\emptyset 40 \mathrm{~mm}$	szt	3	
16.	jw. lecz $\emptyset 50 \mathrm{~mm}$	szt	2	
17.	Zawór regulacyjny firmy HERZ typu STROMAX -R $\emptyset 25 \mathrm{~mm}$	szt	3	
18.	Filtr siatkowy typu FS - 1 Ø 25 mm	szt	4	
19.	jw. lecz Ø 32 mm	szt	1	
20.	Zawór zwrotny mufowy Ø 025 mm	szt	1	
21.	jw. lecz Ø32mm	szt	1	
22.	Zawór regulacyjny typu AB-QM Ø25mm z siłownikiem elektrycznym	szt	1	
23.	jw. lecz Ø32mm	szt	1	
24.	Manometr tarczowy do 0,6 MPa z kurkiem trójdrogowym $\emptyset 15 \mathrm{~mm}$	kpl	4	
25.	Odpowietrzniki automatyczne mosiężne $\varnothing 15 \mathrm{~mm}$	szt	25	
26.	Izolacja ciepłochronna typu THERMAFLEX dla rur $\varnothing 15$ mm	mb	213,0	
27.	jw. lecz $\varnothing 18 \mathrm{~mm}$	mb	163,5	
28.	jw. lecz $\varnothing 22 \mathrm{~mm}$	mb	186,5	
29.	jw. lecz $\varnothing 28 \mathrm{~mm}$	mb	56,0	
30.	jw. lecz $\varnothing 35 \mathrm{~mm}$	mb	34,0	
31.	jw. lecz $\varnothing 42 \mathrm{~mm}$	mb	3,5	
32.	Drzwiczki stalowe emaliowane białe o wym. $20 \times 15 \mathrm{~cm}$ na odpowietrzniki	szt	10	
33.	Rozetki na gałązki grzejnikowe $\emptyset 15 \mathrm{~mm}$	szt	64	
34.	Wsporniki standardowe (fabryczne)	kpl	64	

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& 2 \& 3 \& 4 \& 5 \\
\hline 35. \& \begin{tabular}{l}
Obudowa grzejnika z blachy stalowej perforowanej emaliowanej na kolor biały z mocowaniem dla grzejnika CV11/60/0,4 CV11/60/0,5 CV11/60/0,6 CV11/60/1,1 CV11/60/1,2 CV22/60/0,4 CV22/60/0,7 CV22/60/0,8 CV22/60/0,9 CV22/60/1,0 CV22/60/1,1 CV22/60/1,2 CV22/60/1,4 CV22/60/1,6 \\
Glikol etylenowy 30\% instalacji ct
\end{tabular} \& \begin{tabular}{l}
kpl \\
1
\end{tabular} \& 2
2
2
1
5
1
2
4
4
6
6
1
4
1
190,0 \& 41 \\
\hline \& II. Roboty budowlane \& \& \& \\
\hline \begin{tabular}{l}
1. \\
2. \\
3. \\
3. \\
4. \\
\\
5. \\
\\
6. \\
6. \\
7. \\
\hline 8. \\
9.
\end{tabular} \& \begin{tabular}{l}
Kucie bruzd pod piony CO \(0,20 \times 0,12 \times 5\) \\
z wyniesieniem gruzu \\
Kucie bruzd pod piony CO \(0,15 \times 0,10 \times 15\) \\
z wyniesieniem gruzu \\
Kucie bruzd pod gałązki CO \(0,1 \times 0,1 \times 52\) \\
z wyniesieniem gruzu \\
Przykrycie bruzd pod piony płytą gipsowo-kartonową grub. \(12,5 \mathrm{~mm}\) ze szpachlowaniem
\[
5,0 \times 0,20
\] \\
Przykrycie bruzd pod piony płytą gipsowo-kartonową grub. \(12,5 \mathrm{~mm}\) ze szpachlowaniem
\[
15,0 \times 0,15
\] \\
Przykrycie bruzd pod gałązki co zaprawą cementową \(52,0 \times 0,10\) \\
Przekucia przez strop żelbetowy grub. ok. 15 cm z osadzeniem tulei ochronnych stalowych o średnicy \\
\(\varnothing 25 \mathrm{~mm}\) \\
jw. lecz \(\varnothing 50 \mathrm{~mm}\) \\
Przekucia przez ściany murowane grubość 12 cm z osadzeniem tulei ochronnych z rur stalowych \(\varnothing 25 \mathrm{~mm}\) jw. lecz \(\varnothing 32 \mathrm{~mm}\)
\end{tabular} \& \(\mathrm{m}^{3}\)
\(\mathrm{~m}^{3}\)
\(\mathrm{~m}^{3}\)

$\mathrm{~m}^{2}$

$\mathrm{~m}^{2}$
$\mathrm{~m}^{2}$

szt

szt \& $$
\begin{aligned}
& 0,12 \\
& 0,23 \\
& 0,52 \\
& 1,0 \\
& 2,25 \\
& 5,2 \\
& 2 \\
& 2 \\
& 28 \\
& 28
\end{aligned}
$$ \&

\hline
\end{tabular}

1	2	3	4	5
11.	jw. lecz $\varnothing 40 \mathrm{~mm}$	szt	2	
12.	Przekucia przez ściany murowane grubość 25 cm z			
	osadzeniem tulei ochronnych z rur stalowych $\varnothing 25 \mathrm{~mm}$	szt	10	
13.	jw. lecz $\varnothing 32 \mathrm{~mm}$	szt	8	
14.	jw. lecz $\varnothing 40 \mathrm{~mm}$	szt	2	

Uwaga: Nie uwzględniono zespołów pompowych przy centralach wentylacyjnych, przyjąć zgodnie z zaleceniami producenta central.
mgrinż. Mariuskoppscieiny
 wsuecidroscifostoladingy dobesie sieci, instiacii
 wodoclggowyenkowlizacyinyeh

Nr ewialophos46/poos/os

